
INDEXING OF LARGE

BIOMETRIC DATABASE
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor in Technology

In

Computer Science and Engineering

Madhurima Dharchaudhuri

Roll No 10606028

Under the guidance of

Prof Banshidhar Majhi

Department of Computer Science and Engineering

2

National Institute of Technology, Rourkela

May, 2010

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “AN INDEXING TECHNIQUE FOR BIOMETRIC

DATABASE” submitted by Madhurima Dharchaudhuri in partial fulfillment of the requirements

for the award of Bachelor of Technology Degree in Computer Science and Engineering at the

National Institute of Technology, Rourkela, is an authentic work carried out by her under my

supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other university / institute for the award of any Degree or Diploma.

Date: Prof Banshidhar Majhi

Dept. of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela – 769008

3

 Acknowledgement

In the first place, I am heartily thankful to my supervisor, Prof B. Majhi for his supervision,

advice and guidance from the very early stage of this project till the last level as well as

providing me encouragement and support in various ways which enabled me to develop an

understanding of the subject. I owe my deepest gratitude to Miss Hunny Mehrotra that in the

midst of all her activities she accepted to offer her best possible help.

I am indebted to many of my friends to have supported me and would like to convey my special

thanks to a close friend Subhankar Mishra without whose cooperation and encouragement in the

last stage I could never have produced this work. I sincerely thank my parents for being there

with me throughout and inspiring me with strength and positive attitude whenever I was not very

confident.

Lastly, I offer my regards to all professors and research scholars in the department who

supported me in any respect during the completion of the project. I express my pleasure in

thanking everybody who made this thesis possible and also my apology that I could not mention

personally one by one.

Madhurima Dharchaudhuri

Roll No. 10606028

Computer Science and Engineering

NIT Rourkela

4

Abstract

The word "biometrics" is derived from the Greek words 'bios' and 'metric' which means life and

measurement respectively. This directly translates into "life measurement". Biometrics is the

automated recognition of individuals based on their behavioral and biological characteristics.

Biometric features are information extracted from biometric samples which can be used for

comparison with a biometric reference. Biometrics comprises methods for uniquely recognizing

humans based upon one or more intrinsic physical or behavioral traits. In computer science, in

particular, biometrics is used as a form of identity access management and access control. It is

also used to identify individuals in groups that are under surveillance. Biometrics has fast

emerged as a promising technology for authentication and has already found place in most hi-

tech security areas. An efficient clustering technique has been proposed for partitioning large

biometric database during identification. The system has been tested using bin-miss rate as a

performance parameter. As we are still getting a higher bin-miss rate, so this work is based on

devising an indexing strategy for identification of large biometric database and with greater

accuracy. This technique is based on the modified B+ tree which reduces the disk accesses. It

decreases the data retrieval time and also possible error rates. The indexing technique is used to

declare a person‟s identity with lesser number of comparisons rather than searching the entire

database. The response time deteriorates, as well as the accuracy of the system degrades as the

size of the database increases. Hence for larger applications, the need to reduce the database to a

smaller fraction arises to achieve both higher speeds and improved accuracy. The main purpose

of indexing is to retrieve a small portion of the database for searching the query. Since applying

some traditional clustering schemes does not yield satisfactory results, we go for an indexing

strategy based on tree data structures. Index is used to look-up, input and delete data in an

ordered manner. Speed and efficiency are the main goals in the different types of indexing.

Speed and efficiency include factors like access time, insertion time, deletion time, and space

overhead. The main aim is to perform indexing of a database using different trees beginning with

Binary Search tree followed by B tree before proceeding to its variations, B+ tree and Modified

B+ tree, and subsequently determine their performance based on their respective execution times.

http://en.wikipedia.org/wiki/Intrinsic
http://en.wikipedia.org/wiki/Traits
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Identity_access_management
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Surveillance

5

LIST OF FIGURES

FIGURE 1: A GENERIC BIOMETRIC SYSTEM ... 9

FIGURE 2: BIOMETRIC SYSTEM OPERATION ... 11

FIGURE 3: A CLASSIFICATION OF BIOMETRIC TRAITS .. 13

FIGURE 4: WEB-BASED BIOMETRICS SYSTEMS ARCHITECTURE .. 20

FIGURE 5: K-MEANS FLOWCHART .. 24

FIGURE 6: K-MEANS TREE ... 25

FIGURE 7: FUZZY C MEANS GRAPH ... 25

FIGURE 8: BINARY SEARCH TREE .. 26

FIGURE 9: BINARY TREE SEARCH EXAMPLE ... 27

FIGURE 10: INSERTION INTO A BINARY SEARCH TREE .. 29

FIGURE 11: B TREE SEARCH .. 32

FIGURE 12: B TREE SPLIT ... 32

FIGURE 13: B+ TREE EXAMPLE .. 34

FIGURE 14: INTERNAL NODE OF B+ TREE OF ORDER P .. 34

FIGURE 15: LEAF NODE OF B+ TREE OF ORDER P ... 35

FIGURE 16: INTERNAL NODE OF MODIFIED B+ TREE OF ORDER P ... 35

FIGURE 17: LEAF NODE OF MODIFIED B+ TREE OF ORDER P ... 36

FIGURE 18:THE GENERALIZED STRUCTURE OF MODIFIED B+ TREE .. 37

FIGURE 19: B+ TREE FOR FEATURE VALUE F2 OF ORDER 2 .. 37

FIGURE 20: MODIFIED B+ TREE FOR FEATURE VALUE F2 OF ORDER 2 .. 38

FIGURE 21 : AN EXAMPLE OF A RED-BLACK TREE ... 40

LIST OF TABLES

TABLE 1: FEATURE VALUES ... 37

TABLE 2: FCM VS K-MEANS ... 44

TABLE 3 : VALUES OF NO. OF NODES AND THEIR

 RESPECTIVE TIMES OF BUILDING BST AND B TREE ... 46

LIST OF GRAPHS

GRAPH 1: COMPARISON OF FCM AND K-MEANS .. 44

GRAPH 2: GRAPH SHOWING NO. OF NODES VS TIME REQUIRED IN MSEC 46

6

TABLE OF CONTENTS
1. INTRODUCTION ... 7

1.1 AN INTRODUCTION TO BIOMETRICS ... 7

1.2 AN OVERVIEW OF BIOMETRICS TECHNOLOGY ... 12

1.2.1 TYPES OF BIOMETRICS .. 12

1.2.3 CHALLENGES FACED BY A BIOMETRIC SYSTEM .. 18

1.2.4 WHY BIOMETRICS? ... 19

1.3 MOTIVATION .. 20

1.4 ORGANIZATION OF THE THESIS .. 21

2. AN OVERVIEW OF CLUSTERING METHODS ... 22

2.1 FUZZY C MEANS .. 22

2.2 K MEANS ... 23

3. TREE DATA STRUCTURES AND INDEXING ... 26

3.1 BINARY SEARCH TREE ... 26

3.2 FEW SALIENT FEATURES OF TREES ... 30

3.2.1 BINARY TREES, B-TREES AND B+-TREES .. 30

3.2.2 DEFINITIONS RELATED TO B+ TREE .. 33

3.3 MODIFIED B+ TREE ... 35

3.3.1 INSERTION IN MODIFIED B+ TREE .. 38

3.3.2 SEARCHING IN MODIFIED B+ TREE .. 38

3.4 RED-BLACK TREES ... 40

3.4.1 PROPERTIES OF RED-BLACK TREES ... 41

3.4.2 OPERATIONS ON A RED-BLACK TREE .. 41

3.5 HOW DOES A DATABASE INDEX WORK? ... 43

4. SIMULATION AND RESULTS .. 44

4.1 K-MEANS AND FCM CLUSTERING ALGORITHMS ... 44

4.2 INDEXING USING BINARY SEARCH TREE AND B TREE .. 45

4.3 CONCLUSION AND DISCUSSION ... 47

BIBLIOGRAPHY .. 48

7

Chapter 1

1. INTRODUCTION

1.1 AN INTRODUCTION TO BIOMETRICS

WHAT IS BIOMETRICS?

“Biometrics” means “life measurement” but the term is usually associated with the use of unique

physiological characteristics to identify an individual. Security is the application which most

people associate with biometrics. However, biometric identification eventually has a much

broader relevance as computer interface becomes more natural. Knowing the person with whom

you are conversing is an important part of human interaction. The method of identification based

on biometric characteristics is nowadays preferred over traditional passwords and PIN based

methods for various reasons like the person to be identified is required to be physically present at

the time-of-identification.

Biometrics utilize “something you are” to authenticate identification. This might include

fingerprints, retina pattern, iris, hand geometry, vein patterns, voice password or signature

dynamics. Biometrics can be used with a smart card to authenticate the user. The user‟s

biometric information is stored on a smart card, the card is placed in a reader and a biometric

scanner reads the information to match it against that on the card. This is a fast, accurate and

highly secure form of user authentication.

Whether a human characteristic can be used for biometrics can be understood in terms of the

following parameters:

 Universality – indicates that each person should have the characteristic.

 Uniqueness – means how well the biometric separates one individual from another.

 Permanence – measures how well a biometric resists aging and other variance over time.

 Collectability – refers to ease of acquisition for measurement.

 Performance – deals with accuracy, speed, and robustness of technology used.

 Acceptability – is degree of approval of a technology.

 Circumvention – is the ease of use of a substitute.

 Measurability – the properties should be suitable for capture without waiting time and must

be easy to gather the attribute data passively.

 Reducibility – automated capturing and automated comparison with previously stored data

requires that the captured data should be capable of being reduced to a file which is easy to

handle.

8

 Reliability and tamper-resistance – the attribute should be impractical to mask or

manipulate.

 Privacy – the process should not violate the privacy of the person.

 Comparable – should be able to reduce the attribute to a state that makes it digitally

comparable to others. The less probabilistic the matching involved, the more authoritative

would be the identification.

 Inimitable – the attribute must be irreproducible by other means. The less reproducible the

attribute, the more authoritative the identification is.

A practical biometric system should meet the specified recognition accuracy, speed, and resource

requirements, be harmless to the users, be accepted by the intended population, and be

sufficiently robust to various fraudulent methods and attacks to the system [1].

A biometric system has two modes of operation viz.

 Verification – A one to one comparison of a captured biometric with a stored template to

verify that the individual is the one who she claims to be. Verification can be done in

conjunction with a smart card, username or ID number (based on “what she possesses” or

“what she remembers”).

 Identification – A one to many comparison of the captured biometric against a biometric

database in an attempt to identify an unknown individual. The identification only succeeds in

identifying the individual if the comparison of the biometric sample to a template in the

database falls within a previously set threshold (based on “who she is”).

The method consists of mainly three stages:

1. Data Acquisition

2. Feature Extraction

3. Matching

But this entire process is not that easy. There are few challenges that are faced by any biometric

identification system [2]:

1. During identification the system has to operate on large dataset and the time taken by it to

declare an identity should not be much.

2. To serve its purpose, an identification system needs an efficient searching and matching

algorithm.

3. The number of false- positive in the system should not be very large as the size of the

database increases.

9

A biometric system is a pattern recognition system that works in the following way: acquires

biometric data from an individual, extracts a feature set from the acquired data, and compares

this feature set against the template set in the database.

Biometrics commonly implemented or studied includes fingerprint, face, iris, voice, signature,

and hand geometry. Many other modalities are in various stages of development and assessment.

There is not one biometric modality that is best for all implementations. Biometrics are typically

collected using a device called a sensor. These sensors serve two purposes: first they are used to

acquire the data needed for recognition and then used to convert the data to a digital form.

Example of “sensors” could be digital cameras (for face recognition) or a telephone (for voice

recognition). A biometric template is a digital representation of an individual‟s distinct

characteristics, representing information extracted from a biometric sample [3]. Biometric

templates are what are actually compared in a biometric recognition system. The first time an

individual uses a biometric system is called an enrollment. During the enrollment, biometric

information from an individual is stored. In subsequent uses, biometric information is detected

and compared with the information stored at the time of enrollment. If the biometric system is to

be robust it is crucial that storage and retrieval of such systems themselves be secure. As we can

see from the figure below, the first block (sensor) is the interface between the real world and the

system; it has to acquire all the necessary data.

 FIGURE 1: A GENERIC BIOMETRIC SYSTEM [4]

Most of the times it is an image acquisition system, but it can change according to the

characteristics desired. Acquiring relevant data for the biometrics is one of the critical processes

which have not received adequate attention. The amount of care taken in acquiring the data

determines the performance of the entire system. Two of the tasks associated with it are [3]:

10

a. Quality assessment: Automatically assessing the suitability of the input data for automatic

processing and

b. Segmentation: Separation of the input data into foreground (object of interest) and background

(irrelevant information).

A number of opportunities exist for incorporating the context of the data capture which may

further help improve the performance of the system and avoiding undesirable measurements (and

subsequent recapture of desirable measurements). To detect the machine-readable

representations completely capture the invariant and discriminatory information in the input

measurements is the most challenging problem in representing biometric data. This

representation issue constitutes the essence of system design and has far reaching implications on

the design of the rest of the system. The unprocessed measurement values are typically not

invariant over the time of capture and there is a need to determine salient features of the input

measurement which both discriminate between the identities as well as remain invariant for a

given individual. Thus, the problem of representation is to determine a measurement (feature)

space which is invariant (less variant) for the input signals belonging to the same identity and

which differ maximally for those belonging to different identities (high interclass variation and

low interclass variation).

Referring Figure 1, the second block performs all the necessary pre-processing: it has to remove

artifacts from the sensor, to enhance the input (e.g. removing background noise), to use some

kind of normalization, etc. In the third block necessary features are extracted. This step is an

important step as the correct features need to be extracted in the optimal way. A vector of

numbers or an image with particular properties is used to create a template. A template is a

synthesis of the relevant characteristics extracted from the source. Elements of the biometric

measurement that are not used in the comparison algorithm are discarded in the template to

reduce the file size and to protect the identity of the enrollee.

Given raw input measurements, automatically extracting the given representation is an extremely

difficult problem, especially where input measurements are noisy. A given arbitrarily complex

representation scheme should be amenable to automation without any human intervention. For

instance, the manual system of fingerprint identification uses as much as a dozen features.

However, it is not feasible to incorporate these features into a fully automatic fingerprint system

because it not easy to reliably detect these features using state-of-the-art image processing

techniques. Determining features that are amenable to automation has not received much

attention in computer vision and pattern recognition research and is especially important in

biometrics which are entrenched in the design philosophies of an associated mature manual

system of identification. Traditionally, the feature extraction system follows a staged sequential

architecture which precludes effective integration of extracted information available from the

measurements. Increased availability of inexpensive computing and sensing resources makes it

possible to use better architectures/methods for information processing to detect the features

reliably. Once the features are determined, it is also a common practice to design feature

11

extraction process in a somewhat ad hoc manner. The efficacy of such methods is limited

especially when input measurements are noisy. Rigorous models of feature representations are

helpful in a reliable extraction of the features from the input measurements, especially, in noisy

situations.

FIGURE 2: BIOMETRIC SYSTEM OPERATION [4]

If enrollment is being performed the template is simply stored somewhere (on a card or within a

database or both). If a matching phase is being performed, the obtained template is passed to a

matcher that compares it with other existing templates, estimating the distance between them

using any algorithm. The matching program will analyze the template with the input. This will

then be output for any specified use or purpose (e.g. entrance in a restricted area). The crux of a

matcher is a similarity function which quantifies the intuition of similarity between two

representations of the biometric measurements. Determining an appropriate similarity metric is a

very difficult problem since it should be able to discriminate between the representations of two

different identities despite noise, structural and statistical variations in the input signals, aging,

and artifacts of the feature extraction module. In many biometrics, say signature verification, it is

difficult to even define the ground truth: do the given two signatures belong to the same person

12

or different persons? A representation scheme and a similarity metric determine the accuracy

performance of the system for a given population of identities; hence the selection of appropriate

similarity scheme and representation is critical. Given a complex operating environment, it is

critical to identify a set of valid assumptions upon which the matcher design could be based.

Often, there is a choice between whether it is more effective to exert more constraints by

incorporating better engineering design or to build a more sophisticated similarity function for

the given representation. For instance, in a fingerprint matcher, one could constrain the elastic

distortion altogether and design the matcher based on a rigid transformation assumption or allow

arbitrary distortions and accommodate the variations in the input signals using a clever matcher.

Where to strike the compromise between the complexity of the matcher and controlling the

environment is an open problem.

Associating an identity with an individual is called personal identification. Human race has

come a long way since its inception in small tribal primitive societies where every person in the

community knew every other person. In today‟s complex, geographically mobile, increasingly

electronically interconnected information society, accurate identification is becoming very

important and the problem of identifying a person is becoming ever increasingly difficult. A

number of situations require an identification of a person in our society: have I seen this

applicant before? Is this person an employee of this company? Is this individual a citizen of this

country? Many situations will even warrant identification of a person at the far end of a

communication channel [5].

1.2 AN OVERVIEW OF BIOMETRICS TECHNOLOGY

1.2.1 TYPES OF BIOMETRICS

There are basically two types of biometrics:

1. Behavioral biometrics

2. Physical biometrics

Behavioral biometrics basically measures the characteristics which are acquired naturally over a

time. It is generally used for verification.

Examples of behavioral biometrics include:

 Speaker recognition: which means analyzing vocal behavior

 Signature: deals with analyzing signature dynamics

 Keystroke: deals with measuring the time spacing of typed words

13

Physical biometrics measures the inherent physical characteristics of an individual. It can be used

for either identification or verification.

Examples of physical biometrics include:

 Fingerprint: indicates analyzing fingertip patterns

 Facial recognition: refers to measuring facial characteristics

 Hand geometry: refers to measuring the shape of the hand

 Iris scan: mainly deals with analyzing features of colored ring of the eye

 Retinal scan: indicates analyzing blood vessels in the eye

 DNA: which means analyzing genetic makeup

It is not practically possible to have any single biometrics which is expected to satisfy the needs

of all identification systems. Many of them have already been proposed, researched and

evaluated. Each biometrics has its own strengths as well as limitations; and accordingly, each

biometric appeals to a particular identification (authentication) application. The following

describes few of the existing and burgeoning biometric technologies [4], [3]:

FIGURE 3: A CLASSIFICATION OF BIOMETRIC TRAITS [4]

14

VOICE

Our voices are unique to each person (including twins), and cannot be exactly replicated. Speech

includes two components: a physiological component (the voice tract) and a behavioral

component (the accent). It is almost impossible to imitate anyone's voice perfectly. Voice

recognition systems can discriminate between two very similar voices, including twins. Voice is

a characteristic of an individual. However, it is not expected to be sufficiently unique to permit

identification of an individual from a large database of identities. A voice signal available for

authentication is typically degraded in quality by the microphone, communication channel, and

digitizer characteristics. Before extracting features, the amplitude of the input signal may be

normalized and decomposed into several band-pass frequency channels. The features extracted

from each band may be either time-domain or frequency domain features. Voice capture is

unobtrusive and voice print is an acceptable biometric in almost all societies. Some applications

entail authentication of identity over telephone. In such situations, voice may be the only feasible

biometric. Voice is a behavioral biometrics and is affected by a person's health (e.g., cold),

stress, emotions, etc. To extract features which remain invariant in such cases is very difficult.

Besides, some people seem to be extraordinarily skilled in mimicking others. A reproduction of

an earlier recorded voice can be used to circumvent a voice authentication system in the remote

unattended applications. One of the methods of combating this problem is to prompt the subject

(whose identity is to be authenticated) to utter a different phrase each time. Voice biometrics is

mostly used for telephony-based applications. Voice verification is used for government,

healthcare, call centers, electronic commerce, financial services, customer authentication for

service calls, and for house arrest and probation-related authentication.

FINGERPRINTS

Fingerprint ridges are formed in the womb; we have fingerprints by the fourth month of fetal

development. Once formed, fingerprint ridges are like a picture on the surface of a balloon. As

the person ages, the fingers do get larger. However, the relationship between the ridges stays the

same, just like the picture on a balloon is still recognizable as the balloon is inflated. Fingerprints

are graphical flow-like ridges present on human fingers. Their formations depend on the initial

conditions of the embryonic development and they are believed to be unique to each person (and

each finger). Fingerprints are one of the most mature biometric technologies used in forensic

divisions worldwide for criminal investigations and therefore, have a stigma of criminality

associated with them. Typically, a fingerprint image is captured in one of two ways:

 Scanning an inked impression of a finger or

 Using a live-scan fingerprint scanner

15

Everyone is known to have their own unique and immutable fingerprints. Fingerprint matching

techniques can be classified in two categories: minutiae based and correlation based. Both

techniques have their own unique downfalls. Minutiae points are difficult to extract if the

fingerprint scan quality is low. The correlation based method overcomes the downfalls

encountered with the former method but requires the precise location of the registration points

and are affected by image rotation and translation.

FACE

Face is one of the most acceptable biometrics because it is one of the most common method of

identification which humans use in their visual interactions. In addition, the method of acquiring

face images is non-intrusive. The dimensions, proportions and physical attributes of a person's

face are unique. Biometric facial recognition systems will measure and analyze the overall

structure, shape and proportions of the face: Distance between the eyes, nose, mouth, and jaw

edges; upper outlines of the eye sockets, the sides of the mouth, the location of the nose and

eyes, the area surrounding the cheekbones. The main facial recognition methods are: feature

analysis, neural network, eigenfaces, and automatic face processing. Applications of face

biometrics are access to restricted areas and buildings, banks, embassies, military sites, airports

and law enforcements.

INFRARED FACIAL AND HAND VEIN THERMOGRAMS

The image is obtained by sensing the infrared radiations from the face of a person. The gray level

at each pixel is characteristic of the magnitude of the radiation. Human body radiates heat and

the pattern of heat radiation is a characteristic of each individual body. An infrared sensor could

acquire an image indicating the heat emanating from different parts of the body. These images

are called thermograms. The method of acquisition of the thermal image unobtrusively is akin to

the capture of a regular (visible spectrum) photograph of the person. Any part of the body could

be used for identification. The technology could be used for covert identification solutions and

could distinguish between identical twins. It is also claimed to provide enabling technology for

identifying people under the influence of drugs: the radiation patterns contain signature of each

narcotic drug. A related technology using near infrared imaging is used to scan the back of a

clenched fist to determine hand vein structure .Infrared sensors are prohibitively expensive

which is a factor inhibiting wide spread use of thermograms.

IRIS

The iris is the elastic, pigmented, connective tissue that controls the pupil. The iris is formed in

early life in a process called morphogenesis. Once fully formed, the texture is stable throughout

life. It is the only internal human organ visible from the outside and is protected by the cornea.

16

The iris of the eye has a unique pattern, from eye to eye and person to person. An iris image is

typically captured using a non-contact imaging process .The image is obtained using an ordinary

CCD camera with a resolution of 512 dpi. Capturing an iris image involves cooperation from the

user, both to register the image of iris in the central imaging area and to ensure that the iris is at a

predetermined distance from the focal plane of the camera. A position-invariant constant length

byte vector feature is derived from an annular part of the iris image based on its texture. An iris

scan will analyze over 200 points of the iris, such as rings, furrows, freckles, the corona and will

compare it with a previously recorded template. The identification error rate using iris technology

is believed to be extremely small and the constant length position invariant code permits an

extremely fast method of iris recognition. Applications of iris biometrics include: Identity cards

and passports, border control and other Government programmes, prison security, database

access and computer login, hospital security, schools, aviation security, controlling access to

restricted areas, buildings and homes.

EAR

It is known that the shape of the ear and the structure of the cartilegenous tissue of the pinna

are distinctive. The features of an ear are not expected to be unique to each individual. The ear

recognition approaches are based on matching vectors of distances of salient points on the

pinna from a landmark location on the ear. A new type of ear-shape analysis could see ear

biometrics surpass face recognition as a way of automatically identifying people, claim the UK

researchers developing the system. According to a biometrics expert at the University of

Southampton, ears are remarkably consistent; unlike faces they do not change shape with

different expressions or age, and remain fixed in the middle of the side of the head against a

predictable background! Ears have been used to identify people before now, but other methods

have used an approach similar to face recognition. This involves extracting key features, such

as the position of the nose and eyes - or in the case of the ear, where the channels lie. These are

then represented as a vector, describing where features appear in relation to each other. The

new approach instead captures the shape of the ear as a whole and represents this in code,

allowing the whole ear shape to be compared.

GAIT

Gait is the peculiar way one walks and is a complex spatio-temporal behavioral biometrics. Gait

is not supposed to be unique to each individual, but is sufficiently characteristic to allow identity

authentication. Gait is a behavioral biometric and may not stay invariant especially over a large

period of time, due to large fluctuations of body weight, major shift in the body weight (e.g.,

waddling gait during pregnancy , major injuries involving joints or brain (e.g., cerebellar lesions

in Parkinson disease), or due to inebriety (e.g., drunken gait). Gait biometrics identifies a

person by the way they walk, run or any other type of motion of the legs; gait biometrics can be

17

used to identity everything from the length and thickness of an individual‟s legs to the stride of

their step. Unlike other more researched and identifiable methods of biometrics, gait biometric

technology faces the difficulty of identifying not only a particular body part but a motion. Its

most important application: gait biometrics would be particularly beneficial in identifying

criminal suspects.

KEYSTROKE DYNAMICS

Each person types on a keyboard in a characteristic way. This behavioral biometric offers

sufficient information to allow identity verification though it is not expected to be unique to each

individual. The keystrokes of a person using a system could be monitored unobtrusively as that

person is keying in other information. Keystroke dynamic features are based on time durations

between the keystrokes. Some variants of identity authentication use features based on inter-key

delays as well as dwell-times (how long a person holds down a key). Typical matching

approaches use neural network architecture to associate identity with the keystroke dynamics

features.

SIGNATURE

Signatures are also a behavioral biometric that change over a period of time and are influenced

by physical as well as emotional conditions of the signatories. The manner in which a person

signs his or her name is a characteristic feature of that particular individual. Signatures of some

people vary substantially. Apart from that, professional forgers may be able to reproduce

signatures to fool the system.

1.2.2 PERFORMANCE MEASURES

For evaluating the efficiency of a biometric system, the following parameters are used:

 False Acceptance Rate (FAR)

The frequency with which a non-authorized person is accepted as authorized is termed as

FAR. It is generally a security relevant measure because a false acceptance can often lead to

severe damages. It is a non-stationary statistical quantity which not only shows a personal

correlation, but can even be determined for each individual biometric characteristic. This is

known as personal FAR.

 False Rejection Rate (FRR)

It is defined as the frequency with which an authorized person is rejected access. A false

rejection mostly causes annoyance, so this is generally regarded as a comfort criterion.

Similar to FAR, FRR is also a non-stationary statistical quantity. It does not only show a

18

strong personal correlation, but can also be determined for each individual biometric

characteristic. This is known as personal FRR.

 Failure To Enroll rate (FTE or FER)

It indicates the proportion of people who fail to be enrolled successfully. This also is a non-

stationary statistical quantity which not only shows a strong personal correlation, but along

with that, it can be determined for each individual biometric characteristic. This property is

called personal FER.

 Failure To Acquire (FTA) rate

Users who are enrolled but yet are mistakenly rejected after many identification/verification

attempts count for this rate. It can originate through features which are temporarily not

measurable. It is usually considered within the FRR and need not be calculated separately.

 False Identification Rate (FIR)

During an identification, the probability that the biometric features are falsely assigned to a

reference is referred to as the False Identification Rate. The exact definition depends on the

strategy of assignment; for example, after feature comparison, often more than a single

reference exceeds the decision threshold.

 False Genuine Error or False Match (FM) is when the algorithm or identification method

classifies as genuine an actual impostor comparison. The system incorrectly declares a

successful match between the input pattern and a non-matching biometric template

stored in the database, in the case of identification, or a template associated with an

incorrectly claimed identity, in the case of verification. False Impostor Error or False

Non Match (FNM) is when the algorithm classifies as impostor an actual genuine

comparison. Here the biometric system incorrectly declares a failure of match between

the input pattern and a matching pattern stored in the biometric database (in case of

identification) or the pattern associated with the correctly claimed identity (in case of

verification).

1.2.3 CHALLENGES FACED BY A BIOMETRIC SYSTEM

Biometrics is yet not a foolproof method of automatic human recognition, in spite of the fact that

it appears to be the obvious technology for robust personal identification. Inexpensive and

compact biometric sensors and fast processing chips are available now and with these it is

becoming increasingly clear that a broader use of biometric technology would require better

19

solutions. But there are three fundamental barriers which it has to overcome. They are as

mentioned below [1]:

 Recognition “performance” – it deals with “how to effectively represent and recognize

biometric patterns?” For example, how to recognize a person with an accuracy of

99.999%? Research is still going on to improve the performance of various biometric

recognition systems with the help of better feature representation techniques and

matching algorithms. “Multibiometrics” is a technique to improve performance. It

combines multiple biometric traits such as fingerprint, iris, etc. and such a system aims

to effectively fuse the salient information among the individual biometric traits. This

helps translate into better recognition performance in biometric systems.

 System “security” – it refers to “how to guarantee that the biometric systems are not

vulnerable to disruption?” For example, is it possible to ensure that fraudsters cannot

infiltrate the system? The security of biometric systems is indeed crucial. Assuring that

the input biometric sample was actually presented by its legitimate owner, and the input

pattern was actually matched by the system with the genuinely enrolled pattern samples

require special attention. There are a number of ways a perpetrator may attack a

biometric system; and two very solemn criticisms against biometric systems that have till

date not been addressed agreeably are: 1. Biometrics are not secrets which implies that

an attacker has ready access to a legitimate biometric trait and therefore could

fraudulently enter it to gain access into the biometric system, and 2. Enrolled biometric

templates are not revocable which implies that when a biometric trait has been

compromised, the legitimate can in no way revoke the trait. Both these issues are being

addressed by researchers.

 “Privacy” issues – it deals with “how to make sure that the biometric system is being

exclusively used for the specified purpose?” The two main concerns of the users of

biometric systems are: will the undeniable proof of biometrics-based access be used to

track the person in such a way so as to contravene upon his right to privacy?, will the

biometric data be abused for a purpose that is not intended? But as far as today, there are

no acceptable solutions that can address the entire spectrum of privacy issues.

1.2.4 WHY BIOMETRICS?

There are several reasons why biometrics has become so popular:

 It is the most definitive real-time tool available today

 It can be combined with other tools to form more secure, easier to use verification

solutions

 It recognizes individuals definitively

 It offers enhanced security and convenience over traditionally used identity governance

tools

20

 FIGURE 4: WEB-BASED BIOMETRICS SYSTEMS ARCHITECTURE [4]

1.3 MOTIVATION

When a large number of biometric records are present in the database it requires rapid and

efficient searching method. With the increase in the size of the biometric database, reliability and

scalability issues become the bottleneck for low response time, high search and retrieval

efficiency in addition to accuracy [3]. Traditional identification systems claim identity of an

individual by searching templates of all users enrolled in the database. These comparisons not

only increase the data retrieval time but also the error rates. Hence a size reduction technique

needs to be applied to reduce the search space and thus improve the efficiency. Conventionally

databases are indexed numerically or alphabetically to increase the efficiency of retrieval.

However, biometric databases do not possess a natural order of arrangement which negates the

idea to index them alphabetically/numerically [6].

Certain classification, clustering and indexing approaches [7] [8] have been proposed to reduce

search space. In supervised classification or discriminated analysis, a collection of labeled (pre-

21

classified) patterns are provided; the problem is to label a newly encountered, yet unlabeled,

pattern. Typically, the given labeled (training) patterns are used to learn the descriptions of

classes which in turn are used to label a new pattern. Several classification techniques exist like

classification of face images based on age where input images can be classified into one of three

age-groups: babies, adults, and senior adults. The main drawback of classification is that it is a

supervised method where number of classes has to be known in advance. Moreover the data

contained within each class is not uniformly distributed so the time required to search some

classes is comparatively larger than some others. The limitations of classification can be

addressed with unsupervised approach known as Clustering. It involves the task of dividing data

points into homogeneous classes or clusters so that items in the same class are as similar as

possible and items in different classes are as dissimilar as possible. Intuitively it can be

visualized as a form of data compression, where a large number of samples are converted into a

small number of representative prototypes [3].

Clustering can be broadly classified into Hard and Fuzzy clustering approaches. Non-fuzzy or

hard clustering divides the data into crisp clusters, which is where each data point belongs to

exactly one cluster. Fuzzy clustering in contrast, segments the data such that each sample data

point can belong to more than one cluster and each data point has some „degree of association‟

with every cluster. The sum of the membership grades of a particular data point belonging to

more than one cluster is always one [2]. From the available biometric features collected by

authors it can be inferred that each feature set has an association with more than one cluster and

may have dissimilarity with data of the same cluster. In other words they are said to show inter

class similarities and intra class variations, thus making them difficult to assign them to a single

cluster. Hence fuzzy clustering techniques prove to be an efficient means for grouping biometric

data. But the approach is not suitable for less number of clusters. However, as the size of the

database increases the number of clusters required for partitioning also increases. The system

using FCM has been tested earlier in [2] using bin-miss rate and performed better in comparison

to traditional K-Means approach. But due to a higher bin-miss rate, it is not very accurate and so

we go for an indexing technique for identification of large biometric database.

1.4 ORGANIZATION OF THE THESIS

The thesis has been organized in the following manner. An introduction to biometrics technology

and its role in today‟s world has been presented in the first chapter of this thesis. The second

chapter deals with an overview of the traditional clustering techniques. In the next chapter some

of the tree data structures and the proposed indexing scheme have been discussed. Subsequently,

the simulations and results have been shown, followed by the concluding remarks and the

planned future work.

22

Chapter 2: LITERATURE STUDY PART I

2. AN OVERVIEW OF CLUSTERING METHODS

2.1 FUZZY C MEANS

Clustering involves arranging data points in such a way that the items sharing similar

characteristics are grouped together. The goal of this process is to find the natural grouping of

data points without prior knowledge of class labels (therefore it is unsupervised). Fuzzy C Means

(FCM) is a feature clustering technique wherein each feature point belongs to a cluster by some

degree that is specified by a membership grade [3]. These kind of clustering algorithms are

known as objective function based clustering. If we are given M dimensional database of size N

where N is the total number of feature vectors and M is the dimension of each feature vector,

FCM assigns every feature vector a membership grade for each cluster. The problem here is to

partition the database based on some fuzziness criteria using membership values. To find

membership values, the partition matrix U of size N × c is calculated that defines membership

degrees of each feature vector. The values 0 and 1 in U indicate no membership and full

membership respectively. Grades between 0 and 1 indicate that the feature point has partial

membership in a cluster. The algorithm is composed of the following steps:

1. Initialize U=[uij] matrix, U
(0)

2. At k-step: calculate the centers vectors C
(k)

=[cj] with U
(k)

3. Update U

(k)
 , U

(k+1)

4. If || U

(k+1)
 - U

(k)
||< then STOP; otherwise return to step 2.

23

2.2 K MEANS

K-means is known to be one of the simplest unsupervised learning algorithms that can solve the

well known clustering problem. A given data set is classified through the use of a certain number

of clusters, let us assume k clusters and this number is fixed a priori. k centroids are defined, one

for each cluster. Since different location causes different result, these centroids should be placed

as much as possible far away from each other. In the next step each point belonging to a given

data set is considered and associated to the nearest centroid. Proceeding this way, when no point

is remaining, we can assume that the first step is completed and an early groupage is done. At

this point, the k new centroids resulting from the previous step need to be re-calculated. After we

have these k new centroids, a new binding has to be done between the same data set points and

the nearest new centroid. In this manner, a loop has been generated. As a result of this loop the k

centroids change their location step by step until the point when no more changes are done. In

other words we stop when the centroids do not move anymore. This algorithm aims at

minimizing an objective function, which is a squared error function in this case. The objective

function

 ,

where is a chosen distance measure between a data point and the cluster

centre , is an indicator of the distance of the n data points from their respective cluster centres.

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects that are

being clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of

the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This

produces a separation of the objects into groups from which the

metric to be minimized can be calculated.

24

Here is the step-by-step k means clustering algorithm:

 FIGURE 5: K-MEANS FLOWCHART

Step 1: Begin with a decision on the value of k = number of clusters.

Step 2: Put any initial partition that classifies the data into k clusters. The training samples may

be assigned randomly, or systematically as the following:

1. Take the first k training samples as single-element clusters.

2. Assign each of the remaining (N-k) training samples to the cluster with the

nearest centroid. After each assignment, re-compute the centroid of the gaining

cluster.

Step 3: Take each sample in sequence and compute its distance from the centroid of each of the

clusters. If a sample is not currently in the cluster with the closest centroid, switch this sample to

that cluster and update the centroid of the cluster gaining the new sample and the cluster losing

the sample.

Step 4: Repeat step 3 until convergence is achieved, that is until a pass through the training

sample causes no new assignments.

If the number of data is less than the number of clusters then we assign each data as the centroid

of the cluster. Each centroid will have a cluster number. If the number of data is bigger than the

number of clusters, for each data, we calculate the distance of all centroids and get the minimum

distance. This data is said to belong to the cluster that has minimum distance from this data.

http://people.revoledu.com/kardi/tutorial/kMean/NumericalExample.htm

25

FIGURE 6: K-MEANS TREE [4]

FIGURE 7: FUZZY C MEANS GRAPH [4]

26

Chapter 3: LITERATURE STUDY PART II

3. TREE DATA STRUCTURES AND INDEXING

3.1 BINARY SEARCH TREE [9]

Search trees are data structures that support many dynamic-set operations like SEARCH,

MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT and DELETE. This work

basically deals with search, insertion and deletion operations. Basic operations on a binary search

tree (BST) take time proportional to the height of the tree.

WHAT IS A BST?

FIGURE 8: BINARY SEARCH TREE [4]

As the name suggests, a binary search tree is organized in a binary tree. It can be represented

by a linked data structure in which each node is an object. In addition to a key field and

satellite data, each node contains fields left, right and p that point to the nodes corresponding

to its left child, its right child, and its parent, respectively. The keys in a binary search tree

are always stored in such a way so that the binary-search-tree property is satisfied:

Considering x as a node in a binary search tree, if y is a node in the left subtree of x, then

key[y] <= key[x], and if y is a node in the right subtree of x, then key[x] <= key[y].

On account of the binary-search-tree property we can print out all the keys in a BST in sorted

order by a simple recursive algorithm, which is called an inorder tree walk. In this

27

algorithm, the key of the root of a subtree is printed between the values in its left subtree and

those in its right subtree. Hence it is so named. In a similar manner, a preorder tree walk

prints the root before the values in either subtree, and a postorder tree walk prints the root

after the values in its subtrees.

INORDER-TREE-WALK (x)

 if x != NIL

 then INORDER-TREE-WALK (left[x])

 print key[x]

 INORDER-TREE-WALK (right[x])

Similar are the algorithms for preorder and postorder tree walk.

 Algorithms for SEARCH, MINIMUM, MAXIMUM, INSERT and DELETE are given.

Given a pointer to the root of the tree and a key k, TREE-SEARCH returns a pointer to a

node with key k if one exists; otherwise, it returns NIL.

TREE-SEARCH (x, k)

if x = NIL or k = key[x]

then return x

if k < key[x]

then return TREE-SEARCH (left[x], k)

else return TREE-SEARCH (right[x], k)

FIGURE 9: BINARY TREE SEARCH EXAMPLE [4]

28

An element in a binary search tree whose key is a minimum can always be found by

following left child pointers from the root until a NIL is encountered. The procedure given below

returns a pointer to the minimum element in the subtree rooted at a given node x.

TREE-MINIMUM (x)

while left[x] != NIL

 do xleft[x]

return x

The pseudo code for TREE-MAXIMUM is symmetric to that for TREE-MINIMUM:

TREE-MAXIMUM (x)

while right[x] != NIL

 do xright[x]

return x

INSERTION

To insert a new value v into a binary search tree T, the procedure TREE-INSERT is used. The

procedure is passed a node k for which key[k] = v, left[k] = NIL, and right[k] = NIL.

TREE-INSERT (T, k)

yNIL

xroot[T]

while x != NIL

 do yx

if key[k] < key[x]

 then xleft[x]

 else xright[x]

p[k]y

if y = NIL

 then root[T]k // Tree T was empty

 else if key[k] < key[y]

 then left[y]k

 else right[y]k

29

FIGURE 10: INSERTION INTO A BINARY SEARCH TREE [4]

DELETION

The procedure for deleting a given node k from a BST takes as an argument a pointer to k. The

procedure considers three cases: a) if k has no children, we modify its parent p[k] to replace k

with NIL as its child. b) if the node has only a single child, we “splice out” k by making a new

link between its child and its parent. c) finally, if the node has two children , we splice out k‟s

successor y, which has no left child and replace k‟s key and satellite data with y‟s key and

satellite data.

TREE-DELETE (T, k)

if left[k] = NIL or right[k] = NIL

 then y k

 else y TREE-SUCCESSOR (k)

30

if left[y] != NIL

 then x left[y]

 else x right[y]

if x != NIL

 then p[x] p[y]

if p[y] = NIL

 then root[T] x

 else if y = left[p[y]]

 then left[p[y]] x

 else right[p[y]] x

if y != k

 then key[k] key[y]

 copy y‟s satellite data into k

return y

3.2 FEW SALIENT FEATURES OF TREES

3.2.1 BINARY TREES, B-TREES AND B+-TREES

Binary tree is a tree data structure in which each node has at most two children. Typically the

first node is known as the parent and the child nodes are called left and right.

The B-tree is a generalization of a binary search tree in that more than two paths diverge from a

single node. This tree data structure that keeps data sorted and allows searches, insertions,

deletions, and sequential access in logarithmic amortized time. Unlike self-balancing binary

search trees, the B-tree is optimized for systems that read and write large blocks of data and is

most commonly used in databases and file systems. It is a specialized multi way tree which is

especially designed for use on disk. In a B-tree, each node may contain a large number of keys.

The number of sub trees of each node, then, may also be large. A B-tree is designed to branch

out in this large number of directions and to contain a lot of keys in each node as a result of

31

which the height of the tree is relatively small. This means that only a small number of nodes

must be read from disk in order to retrieve an item. The goal is to get fast access to the data, and

with disk drives this means reading a very small number of records.

The most attractive feature of B-tree is its small memory usage. A binary tree needs at least two

pointers for each record, which amounts to 16N on a modern 64-bit system. A B-tree only needs

one pointer. The practical memory overhead can be reduced as the majority of nodes in a B-tree

are leaves, the performance is supposed to be far better than a binary search tree. Whereas some

others have the view that they are totally different in their uses, hence no comparison between

them can be made at all [3].

DEFINITION OF B TREES [7]

A B tree T which is a rooted tree has the following properties:

1. Every node x contains the following fields:

 n[x] , which is the number of keys currently stored in node x,

 the n[x] keys themselves stored in such an order that key1[x] <= key2[x]

<= … <= keyn[x][x],

 leaf [x], which is a Boolean value that is TRUE if x is a leaf and FALSE

if x is an internal node.

2. Every internal node also has n[x] + 1 pointers c1[x], c2[x], … , cn[x] + 1[x] to its

children. Since leaf nodes have no children, so their ci fields are not defined.

3. The keys keyi[x] separate the ranges of keys stored in each subtree, that is to say,

if ki is any key stored in the subtree with root ci[x], then

 k1 <= key1[x] <= key2[x] <= … <= keyn[x][x] <= kn[x]+1.

4. All leaves have the same depth, which is equal to the height of the tree „h‟.

5. There are upper and lower bounds on the number of keys a node can contain,

which can be expressed in terms of a fixed integer t >= 2 and it is called the

„minimum degree‟ of the B tree:

a. Every node other than the root must have at least (t-1) keys

b. Every node can contain at most (2t-1) keys.

[We get the simplest B tree when t = 2. In this case every internal node has

either 2, 3, or 4 children, and we call it a ‘2-3-4’ tree.]

B trees generalize binary search trees in a natural manner: if an internal B tree node x contains

n[x] keys, then x has (n[x] + 1) children. The keys in node x are used as „dividing points‟ which

separate the range of keys handled by x into (n[x] + 1) sub ranges, each of which is handled by

32

one child of x. Searching a B tree is much similar to searching a binary search tree, except that

instead of making a binary, or “two-way”, branching decision at each node, a “multi way

branching decision” is made according to the number of the node‟s children. To be more precise,

at each internal node x, an (n[x] + 1)-way branching decision is made.

FIGURE 11: B TREE SEARCH [3]

Inserting a key into a B tree is significantly more complicated than inserting a key into a binary

search tree. As with BST, we search for the leaf position at which to insert the new key. With a B

tree we cannot simple create a new leaf node and insert it. Then the resulting tree would not be a

valid B tree. Instead, we insert the new key into an existing leaf node. Since we cannot insert a

key into a leaf node that is “full”, we use an operation here that “splits” a full node y (having 2t –

1 keys) around its median key keyt[y] into two nodes having (t – 1) keys each. The median key

moves up into y‟s parent to identify the “dividing point” between the two new trees. But if y‟s

parent is also full, it must be split again before inserting the new key, and this may continue all

the way up the tree.

FIGURE 12: B TREE SPLIT [3]

33

3.2.2 DEFINITIONS RELATED TO B+ TREE [10]

B+ tree

 is a structure of nodes linked by pointers

 is anchored by a special node called the root, bounded by leaves

 has a unique path to each leaf, and all paths are of equal length

 stores keys only at leaves, and stores reference values in other internal nodes

 guides key search, via the reference values, from the root to the leaves

Node

 is either internal, or leaf, including the root node

 contains at most n entries and one extra pointer for some fixed n

 has no fewer than 2/n entries, the root excepted

Root node

 is a leaf when it is the only node in the tree and will then contain at least one entry

 must have at least two pointers to other nodes when it is internal

Internal node

 contains entries consisting of a reference value and a pointer towards the leaves

 its entries point to data classified as greater than or equal to the corresponding reference

value

 its extra pointer references data classified as less than the node‟s smallest reference value

Leaf node

 contains entries consisting of a key value and a pointer to the storage location of data

matching the key

 its extra pointer references the next leaf node in the tree ordering; leaves linked in this

manner are neighbors

A B+ tree is a type of tree which represents sorted data in a way that allows for efficient

insertion, retrieval and removal of records, each of which is identified by a key. It is a dynamic,

multilevel index, with maximum and minimum bounds on the number of keys in each index

segment (usually called a “block” or "node"). In a B+ tree, in contrast to a B-tree, all records are

stored at the leaf level of the tree; only keys are stored in interior nodes. The primary value of a

B+ tree is in storing data for efficient retrieval in a block-oriented storage context. This is

primarily because unlike binary search trees, B+ trees have very high fanout (typically on the

34

order of 100 or more), which reduces the number of I/O operations required to find an element in

the tree.

In B-tree structures, key search proceeds from the root downwards, following pointers to the

nodes which contain the appropriate range of keys, as indicated by the reference values.

Likewise, B-trees grow from the leaves upwards. After obtaining the appropriate location for the

new entry, it is inserted into the tree. If the node becomes overfull, it is split into half and a

pointer to the new half is returned for insertion in the parent node, which if also full will in turn

split again and so on. B+-trees distinguish internal and leaf nodes, keeping data only at the

leaves, whereas ordinary B-trees would also store keys in the interior.

FIGURE 13: B+ TREE EXAMPLE [4]

There are two types of nodes that a B+ tree typically consists of viz. internal nodes and leaf

nodes. Every internal node points to another node in the tree while leaf node points to the IDs in

the database through data pointers. Leaf nodes also contain another pointer called sibling pointer,

which points to the next leaf node. The figure below shows the structure of an internal node of a

B+ tree of order p where K1, K2, … Kq are keys satisfying K1<K2<…Kq-1, q<=p and Pi points to

a subtree S containing all key values more than Ki-1 but less than or equal to Ki.

 FIGURE 14: INTERNAL NODE OF B+ TREE OF ORDER p [1]

35

The following figure depicts the structure of a leaf node where Di is a data pointer pointing to an

ID having key feature value Ki satisfying K1<K2<…Kp. All leaf nodes are at the same level. The

number of disk accesses required for most operations on a B+ tree is proportional to the height of

the B+ tree [1].

FIGURE 15: LEAF NODE OF B+ TREE OF ORDER p [1]

3.3 MODIFIED B+ TREE

Some variation has to be done in the original B+ tree structure n order to meet the requirements

of insertion and searching in biometric data. In a modified B+ tree of order p, having n feature

values and N IDs, instead of storing a single feature value as key, range Ri on feature values is to

be computed and stored as range. The structure of an internal node of the modified B+ tree of

order p is clear from the figure shown. Here R1, R2, … Rq are range satisfying R1<R2<…Rq-1,

q<=p. (All other properties remain same as B+ tree.)

 FIGURE 16: INTERNAL NODE OF MODIFIED B+ TREE OF ORDER p [1]

The next figure illustrates the structure of a leaf node where Di is the multiple data pointer

pointing to a set of IDs having range feature values Ri satisfying R1<R2<…Rp. (All other

properties remain same). The advantage of this modification is that it reduces the height of the

tree.

36

FIGURE 17: LEAF NODE OF MODIFIED B+ TREE OF ORDER p [1]

The Indexing Technique Used

In [2], N feature vectors F1,F2,…FN have been considered. Each feature vector of m dimension

has been defined as follows.

After that feature vectors FCi, i = 1,2,…m have been defined where FCi consists of all i
th

 feature

values of F1,F2,…FN as follows:

In the technique proposed in [2], these feature vectors FC1,FC2,…FCm are considered as the keys

for indexing. The generalized structure of modified B+ tree is shown in the following figure

where FE is the feature value as range Ri and IDs are the identifiers as multiple data pointers.

37

FIGURE 18:THE GENERALIZED STRUCTURE OF MODIFIED B+ TREE [1]

An example has been considered to determine the modified B+ tree. Table 1 contains 3 feature

values f1, f2, f3 for 10 IDs. Subsequently, the corresponding B+ tree and modified B+ tree for the

feature value f2 of order 2 have been shown.

TABLE 1: FEATURE VALUES [2]

 f1 f2 f3

ID1 4.677 2.005 5.0823

ID2 3.455 5.555 3.755

ID3 2.455 4.544 1.825

ID4 5.666 4.999 4.154

ID5 2.345 3.999 2.970

ID6 4.009 5.913 5.695

ID7 5.002 3.738 2.816

ID8 2.234 2.388 3.835

ID9 1.345 2.950 5.719

ID10 1.988 5.614 4.708

 FIGURE 19: B+ TREE FOR FEATURE VALUE f2 OF ORDER 2 [1]

38

FIGURE 20: MODIFIED B+ TREE FOR FEATURE VALUE f2 OF ORDER 2 [1]

3.3.1 INSERTION IN MODIFIED B+ TREE [1]

Algorithm 1 INSERT (feature value v) : In Modified B+ Tree

1. Compute range Ri for the feature value v.

2. Determine the node containing the range Ri.

3. if the range node Ri is found then

4. Insert only ID of v in the range node.

5. else

6. Create a node for the range Ri, insert ID of v.

7. end if

The insertion procedure to insert a key in the Modified B+ tree is similar to that in the B+ tree.

For every feature value of FC1,FC2,…FCm a Modified B+ tree T is formed. For a given feature

value, a range Ri is computed. Then, by traversing the tree, an appropriate range node is found

in which the new value lies. Once this range has been found, the ID of the feature value is

inserted at the corresponding leaf node. (Note: In the Modified B+ tree for the feature vectors

FC1,FC2,…FCm, it inserts the range as key, instead of the feature value itself.)

3.3.2 SEARCHING IN MODIFIED B+ TREE [1]

Algorithm 2 SEARCH (feature value q) : In Modified B+ tree

1. Compute range Ri for the query feature value q.

2. Ri be the input search range and RANGE be the range stored in the nodes.

3. Start the searching at the root.

39

4. if if we encounter an internal node v then

5. search for Ri among the RANGE stored at v.

6. if Ri < RANGEmin at v then

7. follow the left child pointer.

8. end if

9. if RANGEi <= Ri <RANGEi+1 for two consecutive RANGEi and RANGEi+1 at v then

10. follow the left child pointer of RANGEi+1.

11. end if

12. if Ri >= RANGEmax at v then

13. follow the right pointer of RANGEmax.

14. end if

15. end if

16. if if we encounter a leaf node l then

17. retrieve all IDs from the node l stored RANGE.

18. end if

The problem is as follows: given a Modified B+ tree consisting of n range values as a key, whose

range value is feature values of N feature vectors, we have to search the smallest range in which

a given query vector Q of m dimension [q1,q2,…qm] lies. For every feature value qi of the query

template Q, the range Ri is to be computed. By traversing the tree we reach to the leaf node

having the range Ri. It is then that a set of IDs is extracted which is nearest possible match

corresponding to qi.

PROBLEM STATEMENT

Given a query image, suppose Q, the problem as defined is to reduce the search space in the

database consisting of N individuals say ID1, ID2, ID3, … , IDN, each having a unique ID. We

consider that the biometric trait generates feature vector F and it consists of m feature values for

an individual ID. Let fi,j be the feature value in the j
th

 dimension for all IDs i; all feature values fi,j

are lying between „a‟ and „b‟ where a and b are defined as

Since the biometric system uses pattern recognition technique, it is most unlikely that there is an

image in the given database which has exactly the same feature values as those of query image.

In other words, if the query image Q consists of feature values of m dimension defined as Q =

[q1, q2, … qm] then for all j, qj may not be same as fi,j, where qj is the j
th

 feature value of Q. The

40

feature values of each individual can be arranged in such a way that an efficient searching

algorithm can be used, since these values are known a priori. A possible data structure that can

be used for this purpose is a Binary Search tree or a B tree or a B+ tree whose key values are

these feature values.

Prior to using Modified B+ tree for indexing, this work implements indexing using a Binary

Search tree by reading values stored in a database. The same has been implemented for B tree

and their complexities have been compared.

3.4 RED-BLACK TREES

A red-black tree is one of self-balancing binary search trees, a data structure primarily used to

implement associative arrays. The original structure was invented in 1972 by Rudolf Bayer who

called them "symmetric binary B-trees", but acquired its modern name in a paper in 1978

by Leonidas J. Guibas and Robert Sedgewick. This data structure is complex, but at the same

time has good worst-case running time for its operations and is efficient in practice that is, it can

search, insert, and delete in O(log n) time, where n is total number of elements in the tree [4].

Putting in simple words, a red-black tree is a binary search tree which inserts and removes

„intelligently‟, to ensure the tree is „reasonably balanced‟.

 FIGURE 21 : AN EXAMPLE OF A RED-BLACK TREE [4]

This special type of binary tree is used in computer science to organize pieces of

comparable data, such as text fragments or numbers. The leaf nodes do not contain data and they

need not be explicit in computer memory. To save memory, sometimes a single sentinel

http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Rudolf_Bayer
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Leonidas_J._Guibas
http://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Leaf_node
http://en.wikipedia.org/wiki/Sentinel_node

41

node performs the role of all leaf nodes; where all references from internal nodes to leaf nodes

point to the sentinel node. Red-black trees, like all binary search trees, allow efficient in-order

traversal of their elements in Left-Root-Right fashion. The search-time results from the traversal

from root to leaf, and therefore a balanced tree, having the least possible tree height, results in

O(log n) search time.

3.4.1 PROPERTIES OF RED-BLACK TREES

A red-black tree is a binary search tree with one extra bit of storage per node --- its color that is,

each node has a color attribute, the value of which is either red or black. Then, each node of the

tree contains the fields color, key, left, right, and p. If a child or the parent of a node does not

exist, the corresponding pointer field of the node contains the value NIL. In addition to the

ordinary requirements imposed on binary search trees, the following additional requirements

apply to red-black trees [9]:

1. A node is either red or black.

2. The root is black.

3. All leaves are black.

4. Both children of every red node are black.

5. Every simple path from a given node to any of its descendant leaves contains the same

number of black nodes.

These constraints enforce a critical property of red-black trees --- that the longest path from the

root to any leaf is no more than twice as long as the shortest path from the root to any other leaf

in that tree. As a result of this property, the tree is roughly balanced. Operations such as

inserting, deleting, and finding values require worst-case time proportional to the height of the

tree. Therefore, unlike ordinary binary search trees, this theoretical upper bound on the height

allows red-black trees to be efficient in the worst-case.

3.4.2 OPERATIONS ON A RED-BLACK TREE

Since every red-black tree is a special case of a simple binary search tree, the read-only

operations on a red-black tree require no modification from those used for binary search trees.

However, the immediate consequence of an insertion or a removal on a red-black tree may

violate the properties of a red-black tree. Restoring the red-black properties requires a small

number of color changes which is O(log n) or amortized O(1) and no more than three tree

rotations (two in case of insertion). Although insert and delete operations are complicated yet

their times remain O(log n).

http://en.wikipedia.org/wiki/Tree_(data_structure)#Internal_nodes
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/In-order_traversal
http://en.wikipedia.org/wiki/In-order_traversal
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Amortized_analysis
http://en.wikipedia.org/wiki/Tree_rotation
http://en.wikipedia.org/wiki/Tree_rotation

42

ROTATION

When run on a red-black tree with n keys, the search-tree operations TREE-INSERT and TREE-

DELETE take O (lg n) time. Because they modify the tree, the result of these operations may

violate the red-black properties, which has been enumerated earlier. To restore these properties,

the colors of some of the nodes in the tree must be changed and we also need to change the

pointer structure. The pointer structure can be changed through rotation, which is a local

operation in a search tree that preserves the binary-search-tree property. There are two kinds of

rotations – 1. left rotations, and 2. right rotations. When we do a left rotation on a node x, it is

assumed that its right child y is not nil[T]. The left rotation “pivots” around the link from x to y.

y is made the new root of the subtree, with x as y‟s left child and y‟s left child as x‟s right child

[9]. Similar to this is the right rotation. Both procedures run in O(1) time.

INSERTION

Insertion in a red-black tree begins by adding the node much as binary search tree insertion does

in addition, only by coloring it red. In the binary search tree a leaf node is always added, whereas

in the red-black tree as we have seen, leaves contain no information, so instead a red interior

node with two black leaves is added in place of an existing black leaf.

What happens next depends on the color of other neighboring nodes. The term uncle node is

used to refer to the sibling of a node's parent, just like in human family trees [4].

 Property 3 which states that all leaves are black always holds.

 Property 4 stating that both children of every red node are black is threatened either by

adding a red node, repainting a black node red, or a rotation.

 Property 5, according to which all paths from any given node to its leaf nodes contain the

same number of black nodes, is threatened only by adding a black node, repainting a red

node black, or a rotation.

REMOVAL

In the case of a normal binary search tree, when deleting a node with two non-leaf children, we

find either the maximum element in its left subtree or the minimum element in its right subtree,

and move its value into the node being deleted. Then the node we copied the value from is

deleted, which must have less than two non-leaf children. This reduces to the problem of deleting

a node with at most one non-leaf child because merely copying a value does not violate any red-

black properties. Whether this node is the node we originally wanted to delete or the node we

copied the value from does not really matter.

If a red node is to be deleted, we can simply replace it with its child, which must be black (as we

already know, a red node can have either two non leaf black children or two leaf children which

are black as per definition, thus in this case the red node is replaced by a leaf because it was

http://en.wikipedia.org/wiki/Binary_search_tree#Insertion

43

required the node to be deleted has at most one non leaf child). Then, all paths through the

deleted node will simply pass through one less red node, and both the deleted node's parent and

child must be black. As can be inferred, properties 3 (All leaves, including nulls, are black) and 4

(Both children of every red node are black) still hold.

We can consider another simple case as when the deleted node is black and its child is red. If we

simply remove a black node could break Properties 4 (Both children of every red node are black)

and 5 (All paths from any given node to its leaf nodes contain the same number of black nodes).

But if we repaint its child black, both of these properties are preserved.

3.5 HOW DOES A DATABASE INDEX WORK?

An index

 is generally sorted by key values that need not be the same as those of the table.

 is small and has just a few columns of the table.

 refers to the right block within the table for a key value.

 speeds up reading a row, provided one knows the right search arguments.

A database index is a data structure that improves the speed of data retrieval operations on

a database table but at the cost of slower writes and increased storage space. Indexes can be

created using one or more columns of a database table, providing the basis for both rapid random

look ups and efficient access of ordered records. Since indexes usually contain only the key-

fields according to which the table is to be arranged, and excludes all the other details in the

table, therefore the disk space required to store the index is typically less than that required by

the table. This yields the possibility to store indexes in memory for a table whose data is too

large to store in memory.

WHAT IS INDEXING AND WHY IS IT NEEDED?

Indexing is a way of sorting a number of records on multiple fields. Creating an index on a field

in a table creates another data structure which holds the field value, and pointer to the record it

relates to. This index structure is then sorted, allowing Binary Searches to be performed on it.

When data is stored on disk based storage devices, it is stored as blocks of data. These blocks are

accessed in their entirety, making them the atomic disk access operation. Disk blocks are

structured in much the same way as linked lists; both contain a section for data, a pointer to the

location of the next node (or block), and both need not be stored contiguously [3].

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Column_(database)

44

Chapter 4

4. SIMULATION AND RESULTS

4.1 K-MEANS AND FCM CLUSTERING ALGORITHMS

The k-means algorithm was implemented on a sample data set using C language on Windows

platform. The initial data set consisted of around 8-10 values on which the K-Means clustering

algorithm has been applied taking the value of k (number of clusters) as 2. Then the same has

been implemented on a larger database consisting feature values from 500 individuals with the

value of k ranging from 2 to 7. The system has also been tested using the FCM clustering

algorithm. The results obtained are given in the table below.

TABLE 2: FCM VS K-MEANS

Number of

Clusters

FCM K-

Means

2 1 0

3 2 0

4 4 1

5 9 8

6 12 14

7 14 22

 GRAPH 1: COMPARISON OF FCM AND K-MEANS

-5

0

5

10

15

20

25

0 2 4 6 8

FCM

K-Means

B
in

 M
is

s
R

at
e

 (
B

M
R

)
--

--
>

Number of Clusters ---->

45

This project work is a continuation of the work [3] in which a new identification strategy by

partitioning a biometric database using clustering has been proposed. In the previous work, the

fuzziness criterion has been introduced for finding the nearest clusters for declaring the identity

of the query sample. As had been obtained in [2], similar results have been obtained on

implementing the K-Means clustering algorithm and Fuzzy C Means (FCM) clustering algorithm

in the present work. It has been observed that for less number of clusters the K-Means approach

works comparatively better than the FCM approach. But as the size of database increases, the

number of clusters required for partitioning also increases. With an increase in the number of

clusters, there is a higher bin-miss rate in K-Means and FCM performs comparatively better

though does not provide very accurate results with more number of clusters. From the Graph 1

and the Table 2, we also infer:

a. Clustering approaches like K-Means and FCM perform well with

less number of partitions.

b. Clustering biometric database gives higher bin-miss rate.

c. There is a need to develop robust identification strategy using

some indexing techniques like tree data structures or hashing.

4.2 INDEXING USING BINARY SEARCH TREE AND B TREE

The basic objective of the next work is implementation of the paper [2] which deals with an

efficient indexing technique using Modified B+ tree to reduce the search space of large biometric

database. An indexing method helps to declare a person‟s identity with lesser number of

comparisons rather than searching the entire database. Before proceeding to B+ tree, the same

has been implemented using a Binary Search Tree (BST) using Java language with NetBeans 6.0

IDE tools on Windows platform. Initially, a simple binary search tree has been implemented

which takes as input some well-defined range of values (integer as well as float). The next job

was to perform the same on a given database. For that purpose, a file has been created and stored

consisting of a small sample biometric database. The feature values from this sample database

have been read and inserted into the tree and then indexing has been performed on the database

using this binary search tree. After the values have been inserted and the tree has been built,

searching and removal of a node (element) has been done successfully. Next, implementation of

indexing using B tree has been done on the same data set. Graphs have been plotted indicating

the performance of these two trees. The results of the two simulations have been compared. The

tree operations search, insertion and deletion have been implemented both for Binary Search tree

and B tree. Before implementing these basic dynamic set operations, the preorder, inorder and

postorder traversals of BST have been implemented using the Java language. A random set of

integers was generated and inserted into the tree and then the traversals have been performed in

order to test that the tree is working properly.

46

 TABLE 3 : VALUES OF NO. OF NODES AND THEIR RESPECTIVE TIMES OF

BUILDING BST AND B TREE

Number of

Nodes

Binary

Search

B Tree

350 800 950

700 4000 3500

1005 5500 5000

1300 6100 5500

1600 6600 5900

1900 7000 6250

2200 7100 6300

2500 7700 6600

2800 8200 6800

3100 9200 6900

3500 10000 7000

3808 12000 7500

 GRAPH 2: GRAPH SHOWING NO. OF NODES VS TIME REQUIRED IN MSEC

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000

Binary Search

B Tree

Se
ar

ch
in

g
Ti

m
e

in
 m

Se
c

--
--

>

Number of Nodes ---->

47

4.3 CONCLUSION AND DISCUSSION

As can be observed from Graph 1 and Table 2, K-Means clustering technique performs better

when the size of the database and hence the number of clusters is less. On the other hand, FCM

gives higher bin-miss rate comparatively. But with increase in the size of the database, naturally

the required number of partitions also increases. With this, K-Means has a higher bin-miss rate

as compared to FCM but the results obtained by both the methods are not very accurate and

satisfactory. So in order to improve accuracy as well as speed of data retrieval from the database,

indexing schemes using Binary Search Tree and B Tree have been applied on the sample

database.

The primary operations on a binary search tree require time proportional to the height of the tree,

i.e. time O(h) if the binary search tree is of height h. The insertion operation, in the worst case,

takes time proportional to the height of the tree, whereas it is O(log n) time in the average case.

The search operation also requires O(log n) time in the average case, but in the worst-case

needs O(n) time [9]. As can be observed from GRAPH 2, the time required (in mSec) to create a

binary search tree and insert into it the values read from the database is proportional to the

logarithm of number of nodes in the tree to be built. In other words, given „n‟ to be the number

of nodes to be inserted into the tree, the procedure can be implemented in O(log n) time (time

complexity). Similarly searching a node and deletion of a node also take O(log n) time. This

proves indexing a biometric database and then searching it or performing other operations on it

would be faster and possibly less error-prone as compared to clustering. But the graph obtained

is not very smooth and accurate, thus there is scope for improvement. So, the same has been

implemented using B tree.

After the B-Tree has been implemented, a graph has been plotted with the results obtained and

from these two graphs a comparison has been drawn between the two types of trees used. From

the graph of binary search tree, the time is not exactly (but roughly) proportional to log (n). The

graph of B tree is almost similar but as derived from the execution (run) time of the application,

has time nearly proportional to log (n), i.e. with more number of nodes it takes lesser time to run

and thus performs comparatively superior. Though from this we cannot directly conclude that B

trees always necessarily perform better as compared to binary search trees. Indexing techniques

using Binary Search Tree and B Tree have yielded similar and better though not perfect results.

Implementing B tree indexing has not proved to be much of an improvement over indexing using

Binary search trees. Indexing the database using B+ tree and Modified B+ tree was the ultimate

objective of this project, but due to the timing constraints it could not be implemented. Future

work is planned to be performed on it. A study of the Red-Black trees has been done and since it

is known that it has good worst-case running time for its operations and is efficient: it can search,

insert, and delete in O(log n) time, n being total number of elements in the tree, so further work

can also be based on implementation of Red-Black trees to improve space and time complexity.

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Big-O_notation

48

BIBLIOGRAPHY

[1] Arun Ross, Salil Prabhakar Anil K. Jain, "An Introduction to Biometric Recognition," IEEE

Transactions on Circuits and Systems for Video Technology, vol. VOL. 14, No. 1, pp. 4-20,

January 2004.

[2] Surya Prakash, Devdatt and Phalguni Gupta U. Jayaraman, "An Indexing Technique for

Biometric Database," in IEEE, Aug, 2008, pp. 758-761.

[3] V. Bhawani Radhika, "Biometric Identification Systems: Feature Level Clustering of Large

Biometric Database," NIT Rourkela, May,2009.

[4] Wikipedia. [Online]. http://en.wikipedia.org

[5] Patrick Flynn, Arun A. Ross Anil K. Jain, "Introduction to Biometrics," in Handbook of

Biometrics.: Springer US, 2007, pp. 1-22.

[6] Dakshina R. Kisku, V. Bhawani Radhika, B. Majhi, Phalguni Gupta Hunny Mehrotra,

"Feature Level Clustering of Large Biometric Database," pp. 324-326, May, 2009.

[7] Badrinath G. Srinivas, Banshidhar Majhi and Phalguni Gupta Hunny Mehrotra, "Indexing

Iris Biometric Database Using Energy Histogram of DCT subbands," pp. pp. 194–204,

2009.

[8] Sharat Chikkerur and Venu Govindaraju Amit Mhatre, "Indexing Biometric Databases

using Pyramid Technique," Lecture Notes in Computer Science, vol. 3546, pp. 841-849,

2005.

[9] Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Thomas H. Cormen, Introduction to

Algorithms.: PHI.

[10] Jan Jannink, "Implementing Deletion in B+-Trees," pp. 33-34, March, 1995.

http://en.wikipedia.org/

