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Abstract 

The word "biometrics" is derived from the Greek words 'bios' and 'metric' which means life and 

measurement respectively. This directly translates into "life measurement".  Biometrics is the 

automated recognition of individuals based on their behavioral and biological characteristics. 

Biometric features are information extracted from biometric samples which can be used for 

comparison with a biometric reference. Biometrics comprises methods for uniquely recognizing 

humans based upon one or more intrinsic physical or behavioral traits. In computer science, in 

particular, biometrics is used as a form of identity access management and access control. It is 

also used to identify individuals in groups that are under surveillance. Biometrics has fast 

emerged as a promising technology for authentication and has already found place in most hi-

tech security areas. An efficient clustering technique has been proposed for partitioning large 

biometric database during identification. The system has been tested using bin-miss rate as a 

performance parameter. As we are still getting a higher bin-miss rate, so this work is based on 

devising an indexing strategy for identification of large biometric database and with greater 

accuracy. This technique is based on the modified B+ tree which reduces the disk accesses. It 

decreases the data retrieval time and also possible error rates. The indexing technique is used to 

declare a person‟s identity with lesser number of comparisons rather than searching the entire 

database. The response time deteriorates, as well as the accuracy of the system degrades as the 

size of the database increases. Hence for larger applications, the need to reduce the database to a 

smaller fraction arises to achieve both higher speeds and improved accuracy. The main purpose 

of indexing is to retrieve a small portion of the database for searching the query. Since applying 

some traditional clustering schemes does not yield satisfactory results, we go for an indexing 

strategy based on tree data structures. Index is used to look-up, input and delete data in an 

ordered manner. Speed and efficiency are the main goals in the different types of indexing. 

Speed and efficiency include factors like access time, insertion time, deletion time, and space 

overhead. The main aim is to perform indexing of a database using different trees beginning with 

Binary Search tree followed by B tree before proceeding to its variations, B+ tree and Modified 

B+ tree, and subsequently determine their performance based on their respective execution times. 
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Chapter 1 

1. INTRODUCTION 

1.1 AN INTRODUCTION TO BIOMETRICS 

 

WHAT IS BIOMETRICS? 

 

“Biometrics” means “life measurement” but the term is usually associated with the use of unique 

physiological characteristics to identify an individual. Security is the application which most 

people associate with biometrics. However, biometric identification eventually has a much 

broader relevance as computer interface becomes more natural. Knowing the person with whom 

you are conversing is an important part of human interaction. The method of identification based 

on biometric characteristics is nowadays preferred over traditional passwords and PIN based 

methods for various reasons like the person to be identified is required to be physically present at 

the time-of-identification. 

Biometrics utilize “something you are” to authenticate identification. This might include 

fingerprints, retina pattern, iris, hand geometry, vein patterns, voice password or signature 

dynamics. Biometrics can be used with a smart card to authenticate the user. The user‟s 

biometric information is stored on a smart card, the card is placed in a reader and a biometric 

scanner reads the information to match it against that on the card. This is a fast, accurate and 

highly secure form of user authentication. 

Whether a human characteristic can be used for biometrics can be understood in terms of the 

following parameters: 

 Universality – indicates that each person should have the characteristic. 

 Uniqueness – means how well the biometric separates one individual from another. 

 Permanence – measures how well a biometric resists aging and other variance over time. 

 Collectability – refers to ease of acquisition for measurement. 

 Performance – deals with accuracy, speed, and robustness of technology used. 

 Acceptability – is degree of approval of a technology. 

 Circumvention – is the ease of use of a substitute. 

 Measurability – the properties should be suitable for capture without waiting time and must 

be easy to gather the attribute data passively. 

 Reducibility – automated capturing and automated comparison with previously stored data 

requires that the captured data should be capable of being reduced to a file which is easy to 

handle. 
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 Reliability and tamper-resistance – the attribute should be impractical to mask or 

manipulate. 

 Privacy – the process should not violate the privacy of the person. 

 Comparable – should be able to reduce the attribute to a state that makes it digitally 

comparable to others. The less probabilistic the matching involved, the more authoritative 

would be the identification. 

 Inimitable – the attribute must be irreproducible by other means. The less reproducible the    

attribute, the more authoritative the identification is. 

A practical biometric system should meet the specified recognition accuracy, speed, and resource 

requirements, be harmless to the users, be accepted by the intended population, and be 

sufficiently robust to various fraudulent methods and attacks to the system [1]. 

A biometric system has two modes of operation viz. 

 Verification – A one to one comparison of a captured biometric with a stored template to 

verify that the individual is the one who she claims to be. Verification can be done in 

conjunction with a smart card, username or ID number (based on “what she possesses” or 

“what she remembers”). 

 Identification – A one to many comparison of the captured biometric against a biometric 

database in an attempt to identify an unknown individual. The identification only succeeds in 

identifying the individual if the comparison of the biometric sample to a template in the 

database falls within a previously set threshold (based on “who she is”). 

The method consists of mainly three stages: 

1. Data Acquisition 

2. Feature Extraction 

3. Matching 

But this entire process is not that easy. There are few challenges that are faced by any biometric 

identification system [2]: 

1. During identification the system has to operate on large dataset and the time taken by it to 

declare an identity should not be much. 

2. To serve its purpose, an identification system needs an efficient searching and matching 

algorithm. 

3. The number of false- positive in the system should not be very large as the size of the 

database increases.  
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A biometric system is a pattern recognition system that works in the following way: acquires 

biometric data from an individual, extracts a feature set from the acquired data, and compares 

this feature set against the template set in the database. 

Biometrics commonly implemented or studied includes fingerprint, face, iris, voice, signature, 

and hand geometry. Many other modalities are in various stages of development and assessment. 

There is not one biometric modality that is best for all implementations. Biometrics are typically 

collected using a device called a sensor. These sensors serve two purposes: first they are used to 

acquire the data needed for recognition and then used to convert the data to a digital form. 

Example of “sensors” could be digital cameras (for face recognition) or a telephone (for voice 

recognition). A biometric template is a digital representation of an individual‟s distinct 

characteristics, representing information extracted from a biometric sample [3]. Biometric 

templates are what are actually compared in a biometric recognition system. The first time an 

individual uses a biometric system is called an enrollment. During the enrollment, biometric 

information from an individual is stored. In subsequent uses, biometric information is detected 

and compared with the information stored at the time of enrollment. If the biometric system is to 

be robust it is crucial that storage and retrieval of such systems themselves be secure. As we can 

see from the figure below, the first block (sensor) is the interface between the real world and the 

system; it has to acquire all the necessary data.  

 

                                                             FIGURE 1: A GENERIC BIOMETRIC SYSTEM [4]                                                     

Most of the times it is an image acquisition system, but it can change according to the 

characteristics desired. Acquiring relevant data for the biometrics is one of the critical processes 

which have not received adequate attention. The amount of care taken in acquiring the data 

determines the performance of the entire system. Two of the tasks associated with it are [3]: 
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a. Quality assessment: Automatically assessing the suitability of the input data for automatic 

processing and  

b. Segmentation: Separation of the input data into foreground (object of interest) and background 

(irrelevant information).  

A number of opportunities exist for incorporating the context of the data capture which may 

further help improve the performance of the system and avoiding undesirable measurements (and 

subsequent recapture of desirable measurements). To detect the machine-readable 

representations completely capture the invariant and discriminatory information in the input 

measurements is the most challenging problem in representing biometric data. This 

representation issue constitutes the essence of system design and has far reaching implications on 

the design of the rest of the system. The unprocessed measurement values are typically not 

invariant over the time of capture and there is a need to determine salient features of the input 

measurement which both discriminate between the identities as well as remain invariant for a 

given individual. Thus, the problem of representation is to determine a measurement (feature) 

space which is invariant (less variant) for the input signals belonging to the same identity and 

which differ maximally for those belonging to different identities (high interclass variation and 

low interclass variation). 

Referring Figure 1, the second block performs all the necessary pre-processing: it has to remove 

artifacts from the sensor, to enhance the input (e.g. removing background noise), to use some 

kind of normalization, etc. In the third block necessary features are extracted. This step is an 

important step as the correct features need to be extracted in the optimal way. A vector of 

numbers or an image with particular properties is used to create a template. A template is a 

synthesis of the relevant characteristics extracted from the source. Elements of the biometric 

measurement that are not used in the comparison algorithm are discarded in the template to 

reduce the file size and to protect the identity of the enrollee. 

Given raw input measurements, automatically extracting the given representation is an extremely 

difficult problem, especially where input measurements are noisy. A given arbitrarily complex 

representation scheme should be amenable to automation without any human intervention. For 

instance, the manual system of fingerprint identification uses as much as a dozen features. 

However, it is not feasible to incorporate these features into a fully automatic fingerprint system 

because it not easy to reliably detect these features using state-of-the-art image processing 

techniques. Determining features that are amenable to automation has not received much 

attention in computer vision and pattern recognition research and is especially important in 

biometrics which are entrenched in the design philosophies of an associated mature manual 

system of identification. Traditionally, the feature extraction system follows a staged sequential 

architecture which precludes effective integration of extracted information available from the 

measurements. Increased availability of inexpensive computing and sensing resources makes it 

possible to use better architectures/methods for information processing to detect the features 

reliably. Once the features are determined, it is also a common practice to design feature 
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extraction process in a somewhat ad hoc manner. The efficacy of such methods is limited 

especially when input measurements are noisy. Rigorous models of feature representations are 

helpful in a reliable extraction of the features from the input measurements, especially, in noisy 

situations. 

                                  

FIGURE 2: BIOMETRIC SYSTEM OPERATION [4] 

                                            

If enrollment is being performed the template is simply stored somewhere (on a card or within a 

database or both). If a matching phase is being performed, the obtained template is passed to a 

matcher that compares it with other existing templates, estimating the distance between them 

using any algorithm. The matching program will analyze the template with the input. This will 

then be output for any specified use or purpose (e.g. entrance in a restricted area). The crux of a 

matcher is a similarity function which quantifies the intuition of similarity between two 

representations of the biometric measurements. Determining an appropriate similarity metric is a 

very difficult problem since it should be able to discriminate between the representations of two 

different identities despite noise, structural and statistical variations in the input signals, aging, 

and artifacts of the feature extraction module. In many biometrics, say signature verification, it is 

difficult to even define the ground truth: do the given two signatures belong to the same person 
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or different persons? A representation scheme and a similarity metric determine the accuracy 

performance of the system for a given population of identities; hence the selection of appropriate 

similarity scheme and representation is critical. Given a complex operating environment, it is 

critical to identify a set of valid assumptions upon which the matcher design could be based. 

Often, there is a choice between whether it is more effective to exert more constraints by 

incorporating better engineering design or to build a more sophisticated similarity function for 

the given representation. For instance, in a fingerprint matcher, one could constrain the elastic 

distortion altogether and design the matcher based on a rigid transformation assumption or allow 

arbitrary distortions and accommodate the variations in the input signals using a clever matcher. 

Where to strike the compromise between the complexity of the matcher and controlling the 

environment is an open problem. 

Associating an identity with an individual is called personal identification.  Human race has 

come a long way since its inception in small tribal primitive societies where every person in the 

community knew every other person. In today‟s complex, geographically mobile, increasingly 

electronically interconnected information society, accurate identification is becoming very 

important and the problem of identifying a person is becoming ever increasingly difficult. A 

number of situations require an identification of a person in our society: have I seen this 

applicant before? Is this person an employee of this company? Is this individual a citizen of this 

country? Many situations will even warrant identification of a person at the far end of a 

communication channel [5]. 

 

1.2 AN OVERVIEW OF BIOMETRICS TECHNOLOGY 

 

1.2.1 TYPES OF BIOMETRICS 
 

There are basically two types of biometrics: 

1. Behavioral biometrics 

2. Physical biometrics 

Behavioral biometrics basically measures the characteristics which are acquired naturally over a 

time. It is generally used for verification. 

 

Examples of behavioral biometrics include: 

 Speaker recognition: which means analyzing vocal behavior 

 Signature: deals with analyzing signature dynamics 

 Keystroke: deals with measuring the time spacing of typed words 
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Physical biometrics measures the inherent physical characteristics of an individual. It can be used 

for either identification or verification. 

Examples of physical biometrics include: 

 Fingerprint: indicates analyzing fingertip patterns 

 Facial recognition: refers to measuring facial characteristics 

 Hand geometry: refers to measuring the shape of the hand 

 Iris scan: mainly deals with analyzing features of colored ring of the eye 

 Retinal scan: indicates analyzing blood vessels in the eye 

 DNA: which means analyzing genetic makeup 

It is not practically possible to have any single biometrics which is expected to satisfy the needs 

of all identification systems. Many of them have already been proposed, researched and 

evaluated. Each biometrics has its own strengths as well as limitations; and accordingly, each 

biometric appeals to a particular identification (authentication) application. The following 

describes few of the existing and burgeoning biometric technologies [4], [3]: 

 

 

 

 

FIGURE 3: A CLASSIFICATION OF BIOMETRIC TRAITS [4] 
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VOICE 

 

Our voices are unique to each person (including twins), and cannot be exactly replicated. Speech 

includes two components: a physiological component (the voice tract) and a behavioral 

component (the accent). It is almost impossible to imitate anyone's voice perfectly. Voice 

recognition systems can discriminate between two very similar voices, including twins. Voice is 

a characteristic of an individual. However, it is not expected to be sufficiently unique to permit 

identification of an individual from a large database of identities. A voice signal available for 

authentication is typically degraded in quality by the microphone, communication channel, and 

digitizer characteristics. Before extracting features, the amplitude of the input signal may be 

normalized and decomposed into several band-pass frequency channels. The features extracted 

from each band may be either time-domain or frequency domain features. Voice capture is 

unobtrusive and voice print is an acceptable biometric in almost all societies. Some applications 

entail authentication of identity over telephone. In such situations, voice may be the only feasible 

biometric. Voice is a behavioral biometrics and is affected by a person's health (e.g., cold), 

stress, emotions, etc. To extract features which remain invariant in such cases is very difficult. 

Besides, some people seem to be extraordinarily skilled in mimicking others. A reproduction of 

an earlier recorded voice can be used to circumvent a voice authentication system in the remote 

unattended applications. One of the methods of combating this problem is to prompt the subject 

(whose identity is to be authenticated) to utter a different phrase each time. Voice biometrics is 

mostly used for telephony-based applications. Voice verification is used for government, 

healthcare, call centers, electronic commerce, financial services, customer authentication for 

service calls, and for house arrest and probation-related authentication. 

 

FINGERPRINTS 

 

Fingerprint ridges are formed in the womb; we have fingerprints by the fourth month of fetal 

development. Once formed, fingerprint ridges are like a picture on the surface of a balloon. As 

the person ages, the fingers do get larger. However, the relationship between the ridges stays the 

same, just like the picture on a balloon is still recognizable as the balloon is inflated. Fingerprints 

are graphical flow-like ridges present on human fingers. Their formations depend on the initial 

conditions of the embryonic development and they are believed to be unique to each person (and 

each finger). Fingerprints are one of the most mature biometric technologies used in forensic 

divisions worldwide for criminal investigations and therefore, have a stigma of criminality 

associated with them. Typically, a fingerprint image is captured in one of two ways:  

 

 Scanning an inked impression of a finger or  

 Using a live-scan fingerprint scanner  
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Everyone is known to have their own unique and immutable fingerprints. Fingerprint matching 

techniques can be classified in two categories: minutiae based and correlation based. Both 

techniques have their own unique downfalls. Minutiae points are difficult to extract if the 

fingerprint scan quality is low. The correlation based method overcomes the downfalls 

encountered with the former method but requires the precise location of the registration points 

and are affected by image rotation and translation. 

 

FACE 

 

Face is one of the most acceptable biometrics because it is one of the most common method of 

identification which humans use in their visual interactions. In addition, the method of acquiring 

face images is non-intrusive. The dimensions, proportions and physical attributes of a person's 

face are unique. Biometric facial recognition systems will measure and analyze the overall 

structure, shape and proportions of the face: Distance between the eyes, nose, mouth, and jaw 

edges; upper outlines of the eye sockets, the sides of the mouth, the location of the nose and 

eyes, the area surrounding the cheekbones. The main facial recognition methods are: feature 

analysis, neural network, eigenfaces, and automatic face processing. Applications of face 

biometrics are access to restricted areas and buildings, banks, embassies, military sites, airports 

and law enforcements. 

 

INFRARED FACIAL AND HAND VEIN THERMOGRAMS 

 

The image is obtained by sensing the infrared radiations from the face of a person. The gray level 

at each pixel is characteristic of the magnitude of the radiation. Human body radiates heat and 

the pattern of heat radiation is a characteristic of each individual body. An infrared sensor could 

acquire an image indicating the heat emanating from different parts of the body. These images 

are called thermograms. The method of acquisition of the thermal image unobtrusively is akin to 

the capture of a regular (visible spectrum) photograph of the person. Any part of the body could 

be used for identification. The technology could be used for covert identification solutions and 

could distinguish between identical twins. It is also claimed to provide enabling technology for 

identifying people under the influence of drugs: the radiation patterns contain signature of each 

narcotic drug. A related technology using near infrared imaging is used to scan the back of a 

clenched fist to determine hand vein structure .Infrared sensors are prohibitively expensive 

which is a factor inhibiting wide spread use of thermograms. 

 

IRIS 

 

The iris is the elastic, pigmented, connective tissue that controls the pupil. The iris is formed in 

early life in a process called morphogenesis. Once fully formed, the texture is stable throughout 

life. It is the only internal human organ visible from the outside and is protected by the cornea. 
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The iris of the eye has a unique pattern, from eye to eye and person to person. An iris image is 

typically captured using a non-contact imaging process .The image is obtained using an ordinary 

CCD camera with a resolution of 512 dpi. Capturing an iris image involves cooperation from the 

user, both to register the image of iris in the central imaging area and to ensure that the iris is at a 

predetermined distance from the focal plane of the camera. A position-invariant constant length 

byte vector feature is derived from an annular part of the iris image based on its texture. An iris 

scan will analyze over 200 points of the iris, such as rings, furrows, freckles, the corona and will 

compare it with a previously recorded template. The identification error rate using iris technology 

is believed to be extremely small and the constant length position invariant code permits an 

extremely fast method of iris recognition. Applications of iris biometrics include: Identity cards 

and passports, border control and other Government programmes, prison security, database 

access and computer login, hospital security, schools, aviation security, controlling access to 

restricted areas, buildings and homes. 

 

EAR 

 

It is known that the shape of the ear and the structure of the cartilegenous tissue of the pinna 

are distinctive. The features of an ear are not expected to be unique to each individual. The ear 

recognition approaches are based on matching vectors of distances of salient points on the 

pinna from a landmark location on the ear. A new type of ear-shape analysis could see ear 

biometrics surpass face recognition as a way of automatically identifying people, claim the UK 

researchers developing the system. According to a biometrics expert at the University of 

Southampton, ears are remarkably consistent; unlike faces they do not change shape with 

different expressions or age, and remain fixed in the middle of the side of the head against a 

predictable background! Ears have been used to identify people before now, but other methods 

have used an approach similar to face recognition. This involves extracting key features, such 

as the position of the nose and eyes - or in the case of the ear, where the channels lie. These are 

then represented as a vector, describing where features appear in relation to each other. The 

new approach instead captures the shape of the ear as a whole and represents this in code, 

allowing the whole ear shape to be compared. 

GAIT 

 

Gait is the peculiar way one walks and is a complex spatio-temporal behavioral biometrics. Gait 

is not supposed to be unique to each individual, but is sufficiently characteristic to allow identity 

authentication. Gait is a behavioral biometric and may not stay invariant especially over a large 

period of time, due to large fluctuations of body weight, major shift in the body weight (e.g., 

waddling gait during pregnancy , major injuries involving joints or brain (e.g., cerebellar lesions 

in Parkinson disease ), or due to inebriety (e.g., drunken gait ). Gait biometrics identifies a 

person by the way they walk, run or any other type of motion of the legs; gait biometrics can be 
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used to identity everything from the length and thickness of an individual‟s legs to the stride of 

their step. Unlike other more researched and identifiable methods of biometrics, gait biometric 

technology faces the difficulty of identifying not only a particular body part but a motion. Its 

most important application: gait biometrics would be particularly beneficial in identifying 

criminal suspects. 

 

KEYSTROKE DYNAMICS 

Each person types on a keyboard in a characteristic way. This behavioral biometric offers 

sufficient information to allow identity verification though it is not expected to be unique to each 

individual. The keystrokes of a person using a system could be monitored unobtrusively as that 

person is keying in other information. Keystroke dynamic features are based on time durations 

between the keystrokes. Some variants of identity authentication use features based on inter-key 

delays as well as dwell-times (how long a person holds down a key). Typical matching 

approaches use neural network architecture to associate identity with the keystroke dynamics 

features.  

SIGNATURE 

Signatures are also a behavioral biometric that change over a period of time and are influenced 

by physical as well as emotional conditions of the signatories. The manner in which a person 

signs his or her name is a characteristic feature of that particular individual. Signatures of some 

people vary substantially. Apart from that, professional forgers may be able to reproduce 

signatures to fool the system. 

1.2.2 PERFORMANCE MEASURES 

For evaluating the efficiency of a biometric system, the following parameters are used: 

 False Acceptance Rate (FAR) 

The frequency with which a non-authorized person is accepted as authorized is termed as 

FAR. It is generally a security relevant measure because a false acceptance can often lead to 

severe damages. It is a non-stationary statistical quantity which not only shows a personal 

correlation, but can even be determined for each individual biometric characteristic. This is 

known as personal FAR. 

 False Rejection Rate (FRR) 

It is defined as the frequency with which an authorized person is rejected access. A false 

rejection mostly causes annoyance, so this is generally regarded as a comfort criterion. 

Similar to FAR, FRR is also a non-stationary statistical quantity. It does not only show a 
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strong personal correlation, but can also be determined for each individual biometric 

characteristic. This is known as personal FRR. 

 Failure To Enroll rate (FTE or FER) 

It indicates the proportion of people who fail to be enrolled successfully. This also is a non-

stationary statistical quantity which not only shows a strong personal correlation, but along 

with that, it can be determined for each individual biometric characteristic. This property is 

called personal FER. 

 Failure To Acquire (FTA) rate 

Users who are enrolled but yet are mistakenly rejected after many identification/verification 

attempts count for this rate. It can originate through features which are temporarily not 

measurable. It is usually considered within the FRR and need not be calculated separately. 

 False Identification Rate (FIR) 

During an identification, the probability that the biometric features are falsely assigned to a 

reference is referred to as the False Identification Rate. The exact definition depends on the 

strategy of assignment; for example, after feature comparison, often more than a single 

reference exceeds the decision threshold. 

 False Genuine Error or False Match (FM) is when the algorithm or identification method 

classifies as genuine an actual impostor comparison. The system incorrectly declares a 

successful match between the input pattern and a non-matching biometric template 

stored in the database, in the case of identification, or a template associated with an 

incorrectly claimed identity, in the case of verification. False Impostor Error or False 

Non Match (FNM) is when the algorithm classifies as impostor an actual genuine 

comparison. Here the biometric system incorrectly declares a failure of match between 

the input pattern and a matching pattern stored in the biometric database (in case of 

identification) or the pattern associated with the correctly claimed identity (in case of 

verification). 

 

1.2.3 CHALLENGES FACED BY A BIOMETRIC SYSTEM 
 

Biometrics is yet not a foolproof method of automatic human recognition, in spite of the fact that 

it appears to be the obvious technology for robust personal identification. Inexpensive and 

compact biometric sensors and fast processing chips are available now and with these it is 

becoming increasingly clear that a broader use of biometric technology would require better 
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solutions. But there are three fundamental barriers which it has to overcome. They are as 

mentioned below [1]: 

 Recognition “performance” – it deals with “how to effectively represent and recognize 

biometric patterns?” For example, how to recognize a person with an accuracy of 

99.999%? Research is still going on to improve the performance of various biometric 

recognition systems with the help of better feature representation techniques and 

matching algorithms. “Multibiometrics” is a technique to improve performance. It 

combines multiple biometric traits such as fingerprint, iris, etc. and such a system aims 

to effectively fuse the salient information among the individual biometric traits. This 

helps translate into better recognition performance in biometric systems. 

 System “security” – it refers to “how to guarantee that the biometric systems are not 

vulnerable to disruption?” For example, is it possible to ensure that fraudsters cannot 

infiltrate the system? The security of biometric systems is indeed crucial. Assuring that 

the input biometric sample was actually presented by its legitimate owner, and the input 

pattern was actually matched by the system with the genuinely enrolled pattern samples 

require special attention. There are a number of ways a perpetrator may attack a 

biometric system; and two very solemn criticisms against biometric systems that have till 

date not been addressed agreeably are: 1. Biometrics are not secrets which implies that 

an attacker has ready access to a legitimate biometric trait and therefore could 

fraudulently enter it to gain access into the biometric system, and 2. Enrolled biometric 

templates are not revocable which implies that when a biometric trait has been 

compromised, the legitimate can in no way revoke the trait. Both these issues are being 

addressed by researchers. 

 “Privacy” issues – it deals with “how to make sure that the biometric system is being 

exclusively used for the specified purpose?” The two main concerns of the users of 

biometric systems are: will the undeniable proof of biometrics-based access be used to 

track the person in such a way so as to contravene upon his right to privacy?, will the 

biometric data be abused for a purpose that is not intended? But as far as today, there are 

no acceptable solutions that can address the entire spectrum of privacy issues.  

1.2.4 WHY BIOMETRICS? 
 

There are several reasons why biometrics has become so popular: 

 It is the most definitive real-time tool available today 

 It can be combined with other tools to form more secure, easier to use verification 

solutions 

 It recognizes individuals definitively 

 It offers enhanced security and convenience over traditionally used identity governance 

tools 
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      FIGURE 4: WEB-BASED BIOMETRICS SYSTEMS ARCHITECTURE [4] 

1.3 MOTIVATION 

 

When a large number of biometric records are present in the database it requires rapid and 

efficient searching method. With the increase in the size of the biometric database, reliability and 

scalability issues become the bottleneck for low response time, high search and retrieval 

efficiency in addition to accuracy [3]. Traditional identification systems claim identity of an 

individual by searching templates of all users enrolled in the database. These comparisons not 

only increase the data retrieval time but also the error rates. Hence a size reduction technique 

needs to be applied to reduce the search space and thus improve the efficiency. Conventionally 

databases are indexed numerically or alphabetically to increase the efficiency of retrieval. 

However, biometric databases do not possess a natural order of arrangement which negates the 

idea to index them alphabetically/numerically [6].  

Certain classification, clustering and indexing approaches [7] [8] have been proposed to reduce 

search space. In supervised classification or discriminated analysis, a collection of labeled (pre-



21 
 

classified) patterns are provided; the problem is to label a newly encountered, yet unlabeled, 

pattern. Typically, the given labeled (training) patterns are used to learn the descriptions of 

classes which in turn are used to label a new pattern. Several classification techniques exist like 

classification of face images based on age where input images can be classified into one of three 

age-groups: babies, adults, and senior adults. The main drawback of classification is that it is a 

supervised method where number of classes has to be known in advance. Moreover the data 

contained within each class is not uniformly distributed so the time required to search some 

classes is comparatively larger than some others. The limitations of classification can be 

addressed with unsupervised approach known as Clustering. It involves the task of dividing data 

points into homogeneous classes or clusters so that items in the same class are as similar as 

possible and items in different classes are as dissimilar as possible. Intuitively it can be 

visualized as a form of data compression, where a large number of samples are converted into a 

small number of representative prototypes [3].  

Clustering can be broadly classified into Hard and Fuzzy clustering approaches. Non-fuzzy or 

hard clustering divides the data into crisp clusters, which is where each data point belongs to 

exactly one cluster. Fuzzy clustering in contrast, segments the data such that each sample data 

point can belong to more than one cluster and each data point has some „degree of association‟ 

with every cluster. The sum of the membership grades of a particular data point belonging to 

more than one cluster is always one [2]. From the available biometric features collected by 

authors it can be inferred that each feature set has an association with more than one cluster and 

may have dissimilarity with data of the same cluster. In other words they are said to show inter 

class similarities and intra class variations, thus making them difficult to assign them to a single 

cluster. Hence fuzzy clustering techniques prove to be an efficient means for grouping biometric 

data. But the approach is not suitable for less number of clusters. However, as the size of the 

database increases the number of clusters required for partitioning also increases. The system 

using FCM has been tested earlier in [2] using bin-miss rate and performed better in comparison 

to traditional K-Means approach. But due to a higher bin-miss rate, it is not very accurate and so 

we go for an indexing technique for identification of large biometric database. 

1.4 ORGANIZATION OF THE THESIS 

 

The thesis has been organized in the following manner. An introduction to biometrics technology 

and its role in today‟s world has been presented in the first chapter of this thesis. The second 

chapter deals with an overview of the traditional clustering techniques. In the next chapter some 

of the tree data structures and the proposed indexing scheme have been discussed. Subsequently, 

the simulations and results have been shown, followed by the concluding remarks and the 

planned future work.  
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Chapter 2: LITERATURE STUDY PART I 

2. AN OVERVIEW OF CLUSTERING METHODS 

 

2.1 FUZZY C MEANS 

Clustering involves arranging data points in such a way that the items sharing similar 

characteristics are grouped together. The goal of this process is to find the natural grouping of 

data points without prior knowledge of class labels (therefore it is unsupervised). Fuzzy C Means 

(FCM) is a feature clustering technique wherein each feature point belongs to a cluster by some 

degree that is specified by a membership grade [3]. These kind of clustering algorithms are 

known as objective function based clustering. If we are given M dimensional database of size N 

where N is the total number of feature vectors and M is the dimension of each feature vector, 

FCM assigns every feature vector a membership grade for each cluster. The problem here is to 

partition the database based on some fuzziness criteria using membership values. To find 

membership values, the partition matrix U of size N × c is calculated that defines membership 

degrees of each feature vector. The values 0 and 1 in U indicate no membership and full 

membership respectively. Grades between 0 and 1 indicate that the feature point has partial 

membership in a cluster. The algorithm is composed of the following steps: 

 

1. Initialize U=[uij] matrix, U
(0)

 

2. At k-step: calculate the centers vectors C
(k)

=[cj] with U
(k) 

 

 
3. Update U

(k)
 , U

(k+1) 

 

 
4. If || U

(k+1)
 - U

(k)
||<  then STOP; otherwise return to step 2. 
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2.2 K MEANS 

K-means is known to be one of the simplest unsupervised learning algorithms that can solve the 

well known clustering problem. A given data set is classified through the use of a certain number 

of clusters, let us assume k clusters and this number is fixed a priori. k centroids are defined, one 

for each cluster. Since different location causes different result, these centroids should be placed 

as much as possible far away from each other. In the next step each point belonging to a given 

data set is considered and associated to the nearest centroid. Proceeding this way, when no point 

is remaining, we can assume that the first step is completed and an early groupage is done. At 

this point, the k new centroids resulting from the previous step need to be re-calculated. After we 

have these k new centroids, a new binding has to be done between the same data set points and 

the nearest new centroid. In this manner, a loop has been generated. As a result of this loop the k 

centroids change their location step by step until the point when no more changes are done. In 

other words we stop when the centroids do not move anymore. This algorithm aims at 

minimizing an objective function, which is a squared error function in this case. The objective 

function 

 , 

where  is a chosen distance measure between a data point  and the cluster 

centre , is an indicator of the distance of the n data points from their respective cluster centres. 

The algorithm is composed of the following steps: 

1. Place K points into the space represented by the objects that are 

being clustered. These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of 

the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This 

produces a separation of the objects into groups from which the 

metric to be minimized can be calculated. 
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Here is the step-by-step k means clustering algorithm: 

 

                                        FIGURE 5: K-MEANS FLOWCHART 

Step 1: Begin with a decision on the value of k = number of clusters. 

Step 2: Put any initial partition that classifies the data into k clusters. The training samples may 

be assigned randomly, or systematically as the following: 

1. Take the first k training samples as single-element clusters. 

2. Assign each of the remaining (N-k) training samples to the cluster with the 

nearest centroid. After each assignment, re-compute the centroid of the gaining 

cluster. 

Step 3: Take each sample in sequence and compute its distance from the centroid of each of the 

clusters. If a sample is not currently in the cluster with the closest centroid, switch this sample to 

that cluster and update the centroid of the cluster gaining the new sample and the cluster losing 

the sample. 

Step 4: Repeat step 3 until convergence is achieved, that is until a pass through the training 

sample causes no new assignments. 

If the number of data is less than the number of clusters then we assign each data as the centroid 

of the cluster. Each centroid will have a cluster number. If the number of data is bigger than the 

number of clusters, for each data, we calculate the distance of all centroids and get the minimum 

distance. This data is said to belong to the cluster that has minimum distance from this data. 

http://people.revoledu.com/kardi/tutorial/kMean/NumericalExample.htm
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FIGURE 6: K-MEANS TREE [4] 

 

                        

FIGURE 7: FUZZY C MEANS GRAPH [4] 
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Chapter 3: LITERATURE STUDY PART II 

3. TREE DATA STRUCTURES AND INDEXING 

3.1 BINARY SEARCH TREE [9] 

Search trees are data structures that support many dynamic-set operations like SEARCH, 

MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT and DELETE. This work 

basically deals with search, insertion and deletion operations. Basic operations on a binary search 

tree (BST) take time proportional to the height of the tree.  

WHAT IS A BST? 

 

FIGURE 8: BINARY SEARCH TREE [4] 

As the name suggests, a binary search tree is organized in a binary tree. It can be represented 

by a linked data structure in which each node is an object. In addition to a key field and 

satellite data, each node contains fields left, right and p that point to the nodes corresponding 

to its left child, its right child, and its parent, respectively. The keys in a binary search tree 

are always stored in such a way so that the binary-search-tree property is satisfied: 

Considering x as a node in a binary search tree, if y is a node in the left subtree of x, then 

key[y] <= key[x], and if y is a node in the right subtree of x, then key[x] <= key[y]. 

On account of the binary-search-tree property we can print out all the keys in a BST in sorted 

order by a simple recursive algorithm, which is called an inorder tree walk. In this 
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algorithm, the key of the root of a subtree is printed between the values in its left subtree and 

those in its right subtree. Hence it is so named. In a similar manner, a preorder tree walk 

prints the root before the values in either subtree, and a postorder tree walk prints the root 

after the values in its subtrees. 

INORDER-TREE-WALK (x) 

  if x != NIL 

    then INORDER-TREE-WALK (left[x]) 

         print key[x] 

         INORDER-TREE-WALK (right[x]) 

Similar are the algorithms for preorder and postorder tree walk. 

      Algorithms for SEARCH, MINIMUM, MAXIMUM, INSERT and DELETE are given. 

Given a pointer to the root of the tree and a key k, TREE-SEARCH returns a pointer to a 

node with key k if one exists; otherwise, it returns NIL. 

TREE-SEARCH (x, k) 

if x = NIL or k = key[x] 

then return x 

if k < key[x] 

then return TREE-SEARCH (left[x], k) 

else return TREE-SEARCH (right[x], k) 

                                 

 

FIGURE 9: BINARY TREE SEARCH EXAMPLE [4] 
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An element in a binary search tree whose key is a minimum can always be found by            

following left child pointers from the root until a NIL is encountered. The procedure given below 

returns a pointer to the minimum element in the subtree rooted at a given node x. 

TREE-MINIMUM (x) 

while left[x] != NIL 

   do xleft[x] 

return x 

The pseudo code for TREE-MAXIMUM is symmetric to that for TREE-MINIMUM: 

TREE-MAXIMUM (x) 

while right[x] != NIL 

   do xright[x] 

return x 

INSERTION 

To insert a new value v into a binary search tree T, the procedure TREE-INSERT is used. The 

procedure is passed a node k for which key[k] = v, left[k] = NIL, and right[k] = NIL. 

TREE-INSERT (T, k) 

yNIL 

xroot[T] 

while x != NIL 

   do yx 

if key[k] < key[x] 

   then xleft[x] 

   else xright[x] 

p[k]y 

if y = NIL 

   then root[T]k  //  Tree T was empty 

   else if key[k] < key[y] 

   then left[y]k 

   else right[y]k 
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FIGURE 10: INSERTION INTO A BINARY SEARCH TREE [4] 

                                     

DELETION 

The procedure for deleting a given node k from a BST takes as an argument a pointer to k. The 

procedure considers three cases: a) if k has no children, we modify its parent p[k] to replace k 

with NIL as its child. b) if the node has only a single child, we “splice out” k by making a new 

link between its child and its parent. c) finally, if the node has two children , we splice out k‟s 

successor y, which has no left child and replace k‟s key and satellite data with y‟s key and 

satellite data. 

TREE-DELETE (T, k) 

if left[k] = NIL or right[k] = NIL 

      then y  k 

      else y  TREE-SUCCESSOR (k) 
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if left[y] != NIL 

       then x  left[y] 

       else x  right[y] 

if x != NIL 

       then p[x]  p[y] 

if p[y] = NIL 

      then root[T]  x 

      else if y = left[p[y]] 

                 then left[p[y]]  x 

                 else right[p[y]]  x 

if y != k 

    then key[k]  key[y] 

          copy y‟s satellite data into k 

return y 

 

3.2 FEW SALIENT FEATURES OF TREES 

 

3.2.1 BINARY TREES, B-TREES AND B+-TREES 

Binary tree is a tree data structure in which each node has at most two children. Typically the 

first node is known as the parent and the child nodes are called left and right. 

The B-tree is a generalization of a binary search tree in that more than two paths diverge from a 

single node. This tree data structure that keeps data sorted and allows searches, insertions, 

deletions, and sequential access in logarithmic amortized time. Unlike self-balancing binary 

search trees, the B-tree is optimized for systems that read and write large blocks of data and is 

most commonly used in databases and file systems. It is a specialized multi way tree which is 

especially designed for use on disk. In a B-tree, each node may contain a large number of keys. 

The number of sub trees of each node, then, may also be large. A B-tree is designed to branch 

out in this large number of directions and to contain a lot of keys in each node as a result of 
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which the height of the tree is relatively small. This means that only a small number of nodes 

must be read from disk in order to retrieve an item. The goal is to get fast access to the data, and 

with disk drives this means reading a very small number of records.  

The most attractive feature of B-tree is its small memory usage. A binary tree needs at least two 

pointers for each record, which amounts to 16N on a modern 64-bit system. A B-tree only needs 

one pointer. The practical memory overhead can be reduced as the majority of nodes in a B-tree 

are leaves, the performance is supposed to be far better than a binary search tree. Whereas some 

others have the view that they are totally different in their uses, hence no comparison between 

them can be made at all [3].  

 

DEFINITION OF B TREES [7] 

A B tree T which is a rooted tree has the following properties: 

1. Every node x contains the following fields: 

 n[x] , which is the number of keys currently stored in node x, 

 the n[x] keys themselves stored in such an order that key1[x] <= key2[x] 

<= … <= keyn[x][x], 

 leaf [x], which is a Boolean value that is TRUE if x is a leaf  and FALSE 

if x is an internal node. 

2.   Every internal node also has n[x] + 1 pointers c1[x], c2[x], … , cn[x] + 1[x] to its 

children. Since leaf nodes have no children, so their ci fields are not defined. 

3.   The keys keyi[x] separate the ranges of keys stored in each subtree, that is to say, 

if ki is any key stored in the subtree with root ci[x], then 

                  k1 <= key1[x] <= key2[x] <= … <= keyn[x][x] <= kn[x]+1. 

4.   All leaves have the same depth, which is equal to the height of the tree „h‟. 

5.  There are upper and lower bounds on the number of keys a node can contain, 

which can be expressed in terms of a fixed integer t >= 2 and it is called the 

„minimum degree‟ of the B tree: 

a. Every node other than the root must have at least (t-1) keys 

b. Every node can contain at most (2t-1) keys. 

[We get the simplest B tree when t = 2. In this case every internal node has 

either 2, 3, or 4 children, and we call it a ‘2-3-4’ tree.] 

B trees generalize binary search trees in a natural manner: if an internal B tree node x contains 

n[x] keys, then x has (n[x] + 1) children. The keys in node x are used as „dividing points‟ which 

separate the range of keys handled by x into (n[x] + 1) sub ranges, each of which is handled by 
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one child of x. Searching a B tree is much similar to searching a binary search tree, except that 

instead of making a binary, or “two-way”, branching decision at each node, a “multi way 

branching decision” is made according to the number of the node‟s children. To be more precise, 

at each internal node x, an (n[x] + 1)-way branching decision is made.  

 

 

FIGURE 11: B TREE SEARCH [3] 

 

Inserting a key into a B tree is significantly more complicated than inserting a key into a binary 

search tree. As with BST, we search for the leaf position at which to insert the new key. With a B 

tree we cannot simple create a new leaf node and insert it. Then the resulting tree would not be a 

valid B tree. Instead, we insert the new key into an existing leaf node. Since we cannot insert a 

key into a leaf node that is “full”, we use an operation here that “splits” a full node y (having 2t – 

1 keys) around its median key keyt[y] into two nodes having (t – 1) keys each. The median key 

moves up into y‟s parent to identify the “dividing point” between the two new trees. But if y‟s 

parent is also full, it must be split again before inserting the new key, and this may continue all 

the way up the tree. 

 

 

FIGURE 12: B TREE SPLIT [3] 
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3.2.2 DEFINITIONS RELATED TO B+ TREE [10] 

B+ tree  

 is a structure of nodes linked by pointers 

 is anchored by a special node called the root, bounded by leaves 

 has a unique path to each leaf, and all paths are of equal length 

 stores keys only at leaves, and stores reference values in other internal nodes 

 guides key search, via the reference values, from the root to the leaves 

Node 

 is either internal, or leaf, including the root node 

 contains at most n entries and one extra pointer for some fixed n 

 has no fewer than  2/n  entries, the root excepted 

Root node 

 is a leaf when it is the only node in the tree and will then contain at least one entry 

 must have at least two pointers to other nodes when it is internal 

Internal node 

 contains entries consisting of a reference value and a pointer towards the leaves 

 its entries point to data classified as greater than or equal to the corresponding reference 

value 

 its extra pointer references data classified as less than the node‟s smallest reference value 

Leaf node 

 contains entries consisting of a key value and a pointer to the storage location of data 

matching the key 

 its extra pointer references the next leaf node in the tree ordering; leaves linked in this 

manner are neighbors  

A B+ tree is a type of tree which represents sorted data in a way that allows for efficient 

insertion, retrieval and removal of records, each of which is identified by a key. It is a dynamic, 

multilevel index, with maximum and minimum bounds on the number of keys in each index 

segment (usually called a “block” or "node"). In a B+ tree, in contrast to a B-tree, all records are 

stored at the leaf level of the tree; only keys are stored in interior nodes. The primary value of a 

B+ tree is in storing data for efficient retrieval in a block-oriented storage context. This is 

primarily because unlike binary search trees, B+ trees have very high fanout (typically on the 
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order of 100 or more), which reduces the number of I/O operations required to find an element in 

the tree. 

In B-tree structures, key search proceeds from the root downwards, following pointers to the 

nodes which contain the appropriate range of keys, as indicated by the reference values. 

Likewise, B-trees grow from the leaves upwards. After obtaining the appropriate location for the 

new entry, it is inserted into the tree. If the node becomes overfull, it is split into half and a 

pointer to the new half is returned for insertion in the parent node, which if also full will in turn 

split again and so on. B+-trees distinguish internal and leaf nodes, keeping data only at the 

leaves, whereas ordinary B-trees would also store keys in the interior. 

 

                            

FIGURE 13: B+ TREE EXAMPLE [4] 

There are two types of nodes that a B+ tree typically consists of viz. internal nodes and leaf 

nodes. Every internal node points to another node in the tree while leaf node points to the IDs in 

the database through data pointers. Leaf nodes also contain another pointer called sibling pointer, 

which points to the next leaf node. The figure below shows the structure of an internal node of a 

B+ tree of order p where K1, K2, … Kq are keys satisfying K1<K2<…Kq-1, q<=p and Pi points to 

a subtree S containing all key values more than Ki-1 but less than or equal to Ki. 

 

                                     FIGURE 14: INTERNAL NODE OF B+ TREE OF ORDER p [1]                                       
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The following figure depicts the structure of a leaf node where Di is a data pointer pointing to an 

ID having key feature value Ki satisfying K1<K2<…Kp. All leaf nodes are at the same level. The 

number of disk accesses required for most operations on a B+ tree is proportional to the height of 

the B+ tree [1]. 

 

FIGURE 15: LEAF NODE OF B+ TREE OF ORDER p [1] 

 

3.3 MODIFIED B+ TREE  

 

Some variation has to be done in the original B+ tree structure n order to meet the requirements 

of insertion and searching in biometric data. In a modified B+ tree of order p, having n feature 

values and N IDs, instead of storing a single feature value as key, range Ri on feature values is to 

be computed and stored as range. The structure of an internal node of the modified B+ tree of 

order p is clear from the figure shown. Here R1, R2, … Rq are range satisfying R1<R2<…Rq-1, 

q<=p. (All other properties remain same as B+ tree.) 

                      

                        FIGURE 16: INTERNAL NODE OF MODIFIED B+ TREE OF ORDER p [1] 

                            

The next figure illustrates the structure of a leaf node where Di is the multiple data pointer 

pointing to a set of IDs having range feature values Ri satisfying R1<R2<…Rp. (All other 

properties remain same). The advantage of this modification is that it reduces the height of the 

tree. 
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FIGURE 17: LEAF NODE OF MODIFIED B+ TREE OF ORDER p [1] 

                                     

The Indexing Technique Used  

In [2], N feature vectors F1,F2,…FN have been considered.  Each feature vector of m dimension 

has been defined as follows. 

                            

 

After that feature vectors FCi, i = 1,2,…m have been defined where FCi consists of all i
th

 feature 

values of F1,F2,…FN as follows:  

                       

 

In the technique proposed in [2], these feature vectors FC1,FC2,…FCm are considered as the keys 

for indexing. The generalized structure of modified B+ tree is shown in the following figure 

where FE is the feature value as range Ri and IDs are the identifiers as multiple data pointers. 
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FIGURE 18:THE GENERALIZED STRUCTURE OF MODIFIED B+ TREE [1] 

An example has been considered to determine the modified B+ tree. Table 1 contains 3 feature 

values f1, f2, f3 for 10 IDs. Subsequently, the corresponding B+ tree and modified B+ tree for the 

feature value f2 of order 2 have been shown. 

TABLE 1: FEATURE VALUES [2] 

  f1 f2 f3 

ID1 4.677 2.005 5.0823 

ID2 3.455 5.555 3.755 

ID3 2.455 4.544 1.825 

ID4 5.666 4.999 4.154 

ID5 2.345 3.999 2.970 

ID6 4.009 5.913 5.695 

ID7 5.002 3.738 2.816 

ID8 2.234 2.388 3.835 

ID9 1.345 2.950 5.719 

ID10 1.988 5.614 4.708 

                       

                                                

 

                                FIGURE 19: B+ TREE FOR FEATURE VALUE f2 OF ORDER 2 [1] 



38 
 

                                      

 

FIGURE 20: MODIFIED B+ TREE FOR FEATURE VALUE f2 OF ORDER 2 [1] 

3.3.1 INSERTION IN MODIFIED B+ TREE [1] 
 

Algorithm 1 INSERT (feature value v) : In Modified B+ Tree 

1. Compute range Ri for the feature value v. 

2. Determine the node containing the range Ri. 

3. if the range node Ri is found then 

4. Insert only ID of v in the range node. 

5. else  

6. Create a node for the range Ri, insert ID of v. 

7. end if 

The insertion procedure to insert a key in the Modified B+ tree is similar to that in the B+ tree. 

For every feature value of FC1,FC2,…FCm a Modified B+ tree T is formed. For a given feature 

value, a range Ri is computed.  Then, by traversing the tree, an appropriate range node is found 

in which the new value lies. Once this range has been found, the ID of the feature value is 

inserted at the corresponding leaf node. (Note: In the Modified B+ tree for the feature vectors 

FC1,FC2,…FCm, it inserts the range as key, instead of the feature value itself.) 

 

3.3.2 SEARCHING IN MODIFIED B+ TREE [1] 
 

Algorithm 2 SEARCH (feature value q) : In Modified B+ tree 

1. Compute range Ri for the query feature value q. 

2. Ri be the input search range and RANGE be the range stored in the nodes. 

3. Start the searching at the root. 
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4. if if we encounter an internal node v then 

5.   search for Ri among the RANGE stored at v. 

6.   if Ri < RANGEmin at v then 

7.      follow the left child pointer. 

8.   end if 

9.   if RANGEi <= Ri <RANGEi+1 for two consecutive RANGEi and RANGEi+1 at v then 

10.      follow the left child pointer of RANGEi+1. 

11.   end if 

12.   if Ri >= RANGEmax at v then 

13.     follow the right pointer of RANGEmax. 

14.   end if 

15.  end if 

16.  if if we encounter a leaf node l then 

17.     retrieve all IDs from the node l stored RANGE. 

18.  end if 

The problem is as follows: given a Modified B+ tree consisting of n range values as a key, whose 

range value is feature values of N feature vectors, we have to search the smallest range in which 

a given query vector Q of m dimension [q1,q2,…qm] lies. For every feature value qi of the query 

template Q, the range Ri is to be computed. By traversing the tree we reach to the leaf node 

having the range Ri. It is then that a set of IDs is extracted which is nearest possible match 

corresponding to qi. 

 

PROBLEM STATEMENT 

Given a query image, suppose Q, the problem as defined is to reduce the search space in the 

database consisting of N individuals say ID1, ID2, ID3, … , IDN, each having a unique ID. We 

consider that the biometric trait generates feature vector F and it consists of m feature values for 

an individual ID. Let fi,j be the feature value in the j
th

 dimension for all IDs i; all feature values fi,j 

are lying between „a‟ and „b‟ where a and b are defined as 

 

 

Since the biometric system uses pattern recognition technique, it is most unlikely that there is an 

image in the given database which has exactly the same feature values as those of query image. 

In other words, if the query image Q consists of feature values of m dimension defined as Q = 

[q1, q2, … qm] then for all j, qj may not be same as fi,j, where qj is the j
th

 feature value of Q. The 
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feature values of each individual can be arranged in such a way that an efficient searching 

algorithm can be used, since these values are known a priori. A possible data structure that can 

be used for this purpose is a Binary Search tree or a B tree or a B+ tree whose key values are 

these feature values. 

Prior to using Modified B+ tree for indexing, this work implements indexing using a Binary 

Search tree by reading values stored in a database. The same has been implemented for B tree 

and their complexities have been compared. 

 

3.4 RED-BLACK TREES 

 

A red-black tree is one of self-balancing binary search trees, a data structure primarily used to 

implement associative arrays. The original structure was invented in 1972 by Rudolf Bayer who 

called them "symmetric binary B-trees", but acquired its modern name in a paper in 1978 

by Leonidas J. Guibas and Robert Sedgewick. This data structure is complex, but at the same 

time has good worst-case running time for its operations and is efficient in practice that is, it can 

search, insert, and delete in O(log n) time, where n is total number of elements in the tree [4]. 

Putting in simple words, a red-black tree is a binary search tree which inserts and removes 

„intelligently‟, to ensure the tree is „reasonably balanced‟.  

 

 

                                    FIGURE 21 : AN EXAMPLE OF A RED-BLACK TREE [4] 

This special type of binary tree is used in computer science to organize pieces of 

comparable data, such as text fragments or numbers. The leaf nodes do not contain data and they 

need not be explicit in computer memory. To save memory, sometimes a single sentinel 

http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Rudolf_Bayer
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Leonidas_J._Guibas
http://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Leaf_node
http://en.wikipedia.org/wiki/Sentinel_node
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node performs the role of all leaf nodes; where all references from internal nodes to leaf nodes 

point to the sentinel node. Red-black trees, like all binary search trees, allow efficient in-order 

traversal of their elements in Left-Root-Right fashion. The search-time results from the traversal 

from root to leaf, and therefore a balanced tree, having the least possible tree height, results in 

O(log n) search time.  

 

3.4.1 PROPERTIES OF RED-BLACK TREES 

 

A red-black tree is a binary search tree with one extra bit of storage per node --- its color that is, 

each node has a color attribute, the value of which is either red or black. Then, each node of the 

tree contains the fields color, key, left, right, and p. If a child or the parent of a node does not 

exist, the corresponding pointer field of the node contains the value NIL. In addition to the 

ordinary requirements imposed on binary search trees, the following additional requirements 

apply to red-black trees [9]: 

1. A node is either red or black. 

2. The root is black.  

3. All leaves are black. 

4. Both children of every red node are black. 

5. Every simple path from a given node to any of its descendant leaves contains the same 

number of black nodes. 

These constraints enforce a critical property of red-black trees --- that the longest path from the 

root to any leaf is no more than twice as long as the shortest path from the root to any other leaf 

in that tree. As a result of this property, the tree is roughly balanced. Operations such as 

inserting, deleting, and finding values require worst-case time proportional to the height of the 

tree. Therefore, unlike ordinary binary search trees, this theoretical upper bound on the height 

allows red-black trees to be efficient in the worst-case. 

 

3.4.2 OPERATIONS ON A RED-BLACK TREE 

Since every red-black tree is a special case of a simple binary search tree, the read-only 

operations on a red-black tree require no modification from those used for binary search trees.  

However, the immediate consequence of an insertion or a removal on a red-black tree may 

violate the properties of a red-black tree. Restoring the red-black properties requires a small 

number of color changes which is O(log n) or amortized O(1) and no more than three tree 

rotations (two in case of insertion). Although insert and delete operations are complicated yet 

their times remain O(log n). 

http://en.wikipedia.org/wiki/Tree_(data_structure)#Internal_nodes
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/In-order_traversal
http://en.wikipedia.org/wiki/In-order_traversal
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Amortized_analysis
http://en.wikipedia.org/wiki/Tree_rotation
http://en.wikipedia.org/wiki/Tree_rotation
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ROTATION 

When run on a red-black tree with n keys, the search-tree operations TREE-INSERT and TREE-

DELETE take O (lg n) time. Because they modify the tree, the result of these operations may 

violate the red-black properties, which has been enumerated earlier. To restore these properties, 

the colors of some of the nodes in the tree must be changed and we also need to change the 

pointer structure. The pointer structure can be changed through rotation, which is a local 

operation in a search tree that preserves the binary-search-tree property. There are two kinds of 

rotations – 1. left rotations, and 2. right rotations. When we do a left rotation on a node x, it is 

assumed that its right child y is not nil[T]. The left rotation “pivots” around the link from x to y. 

y is made the new root of the subtree, with x as y‟s left child and y‟s left child as x‟s right child 

[9]. Similar to this is the right rotation. Both procedures run in O(1) time. 

INSERTION 

Insertion in a red-black tree begins by adding the node much as binary search tree insertion does 

in addition, only by coloring it red. In the binary search tree a leaf node is always added, whereas 

in the red-black tree as we have seen, leaves contain no information, so instead a red interior 

node with two black leaves is added in place of an existing black leaf. 

What happens next depends on the color of other neighboring nodes. The term uncle node is 

used to refer to the sibling of a node's parent, just like in human family trees [4]. 

 Property 3 which states that all leaves are black always holds. 

 Property 4 stating that both children of every red node are black is threatened either by 

adding a red node, repainting a black node red, or a rotation. 

 Property 5, according to which all paths from any given node to its leaf nodes contain the 

same number of black nodes, is threatened only by adding a black node, repainting a red 

node black, or a rotation. 

 

REMOVAL 

In the case of a normal binary search tree, when deleting a node with two non-leaf children, we 

find either the maximum element in its left subtree or the minimum element in its right subtree, 

and move its value into the node being deleted. Then the node we copied the value from is 

deleted, which must have less than two non-leaf children. This reduces to the problem of deleting 

a node with at most one non-leaf child because merely copying a value does not violate any red-

black properties. Whether this node is the node we originally wanted to delete or the node we 

copied the value from does not really matter.  

If a red node is to be deleted, we can simply replace it with its child, which must be black (as we 

already know, a red node can have either two non leaf black children or two leaf children which 

are black as per definition, thus in this case the red node is replaced by a leaf because it was 

http://en.wikipedia.org/wiki/Binary_search_tree#Insertion


43 
 

required the node to be deleted has at most one non leaf child). Then, all paths through the 

deleted node will simply pass through one less red node, and both the deleted node's parent and 

child must be black. As can be inferred, properties 3 (All leaves, including nulls, are black) and 4 

(Both children of every red node are black) still hold. 

We can consider another simple case as when the deleted node is black and its child is red. If we 

simply remove a black node could break Properties 4 (Both children of every red node are black) 

and 5 (All paths from any given node to its leaf nodes contain the same number of black nodes). 

But if we repaint its child black, both of these properties are preserved. 

 

3.5 HOW DOES A DATABASE INDEX WORK? 

An index 

 is generally sorted by key values that need not be the same as those of the table. 

 is small and has just a few columns of the table. 

 refers to the right block within the table for a key value. 

 speeds up reading a row, provided one knows the right search arguments. 

A database index is a data structure that improves the speed of data retrieval operations on 

a database table but at the cost of slower writes and increased storage space. Indexes can be 

created using one or more columns of a database table, providing the basis for both rapid random 

look ups and efficient access of ordered records. Since indexes usually contain only the key-

fields according to which the table is to be arranged, and excludes all the other details in the 

table, therefore the disk space required to store the index is typically less than that required by 

the table. This yields the possibility to store indexes in memory for a table whose data is too 

large to store in memory. 

WHAT IS INDEXING AND WHY IS IT NEEDED? 

Indexing is a way of sorting a number of records on multiple fields. Creating an index on a field 

in a table creates another data structure which holds the field value, and pointer to the record it 

relates to. This index structure is then sorted, allowing Binary Searches to be performed on it. 

When data is stored on disk based storage devices, it is stored as blocks of data. These blocks are 

accessed in their entirety, making them the atomic disk access operation. Disk blocks are 

structured in much the same way as linked lists; both contain a section for data, a pointer to the 

location of the next node (or block), and both need not be stored contiguously [3]. 

 

 

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Column_(database)
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Chapter 4 

4. SIMULATION AND RESULTS 

4.1 K-MEANS AND FCM CLUSTERING ALGORITHMS 

The k-means algorithm was implemented on a sample data set using C language on Windows 

platform. The initial data set consisted of around 8-10 values on which the K-Means clustering 

algorithm has been applied taking the value of k (number of clusters) as 2. Then the same has 

been implemented on a larger database consisting feature values from 500 individuals with the 

value of k ranging from 2 to 7. The system has also been tested using the FCM clustering 

algorithm. The results obtained are given in the table below. 

TABLE 2: FCM VS K-MEANS 

Number of 

Clusters 

FCM K-

Means 

2 1 0 

3 2 0 

4 4 1 

5 9 8 

6 12 14 

7 14 22 

 

 

       GRAPH 1: COMPARISON OF FCM AND K-MEANS 
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This project work is a continuation of the work [3] in which a new identification strategy by 

partitioning a biometric database using clustering has been proposed. In the previous work, the 

fuzziness criterion has been introduced for finding the nearest clusters for declaring the identity 

of the query sample. As had been obtained in [2], similar results have been obtained on 

implementing the K-Means clustering algorithm and Fuzzy C Means (FCM) clustering algorithm 

in the present work. It has been observed that for less number of clusters the K-Means approach 

works comparatively better than the FCM approach. But as the size of database increases, the 

number of clusters required for partitioning also increases. With an increase in the number of 

clusters, there is a higher bin-miss rate in K-Means and FCM performs comparatively better 

though does not provide very accurate results with more number of clusters. From the Graph 1 

and the Table 2, we also infer: 

a. Clustering approaches like K-Means and FCM perform well with 

less number of partitions.  

b. Clustering biometric database gives higher bin-miss rate. 

c. There is a need to develop robust identification strategy using 

some indexing techniques like tree data structures or hashing. 

 

4.2 INDEXING USING BINARY SEARCH TREE AND B TREE 

The basic objective of the next work is implementation of the paper [2] which deals with an 

efficient indexing technique using Modified B+ tree to reduce the search space of large biometric 

database. An indexing method helps to declare a person‟s identity with lesser number of 

comparisons rather than searching the entire database. Before proceeding to B+ tree, the same 

has been implemented using a Binary Search Tree (BST) using Java language with NetBeans 6.0 

IDE tools on Windows platform. Initially, a simple binary search tree has been implemented 

which takes as input some well-defined range of values (integer as well as float). The next job 

was to perform the same on a given database. For that purpose, a file has been created and stored 

consisting of a small sample biometric database. The feature values from this sample database 

have been read and inserted into the tree and then indexing has been performed on the database 

using this binary search tree. After the values have been inserted and the tree has been built, 

searching and removal of a node (element) has been done successfully. Next, implementation of 

indexing using B tree has been done on the same data set. Graphs have been plotted indicating 

the performance of these two trees. The results of the two simulations have been compared. The 

tree operations search, insertion and deletion have been implemented both for Binary Search tree 

and B tree. Before implementing these basic dynamic set operations, the preorder, inorder and 

postorder traversals of BST have been implemented using the Java language. A random set of 

integers was generated and inserted into the tree and then the traversals have been performed in 

order to test that the tree is working properly. 
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         TABLE 3 : VALUES OF NO. OF NODES AND THEIR RESPECTIVE TIMES OF 

BUILDING BST AND B TREE 

Number of 

Nodes 

Binary 

Search 

B Tree 

350 800 950 

700 4000 3500 

1005 5500 5000 

1300 6100 5500 

1600 6600 5900 

1900 7000 6250 

2200 7100 6300 

2500 7700 6600 

2800 8200 6800 

3100 9200 6900 

3500 10000 7000 

3808 12000 7500 

 

 

                                GRAPH 2: GRAPH SHOWING NO. OF NODES VS TIME REQUIRED IN MSEC 
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4.3 CONCLUSION AND DISCUSSION  

 

As can be observed from Graph 1 and Table 2, K-Means clustering technique performs better 

when the size of the database and hence the number of clusters is less. On the other hand, FCM 

gives higher bin-miss rate comparatively. But with increase in the size of the database, naturally 

the required number of partitions also increases. With this, K-Means has a higher bin-miss rate 

as compared to FCM but the results obtained by both the methods are not very accurate and 

satisfactory. So in order to improve accuracy as well as speed of data retrieval from the database, 

indexing schemes using Binary Search Tree and B Tree have been applied on the sample 

database. 

The primary operations on a binary search tree require time proportional to the height of the tree, 

i.e. time O(h) if the binary search tree is of height h. The insertion operation, in the worst case, 

takes time proportional to the height of the tree, whereas it is O(log n) time in the average case. 

The search operation also requires O(log n) time in the average case, but in the worst-case 

needs O(n) time [9]. As can be observed from GRAPH 2, the time required (in mSec) to create a 

binary search tree and insert into it the values read from the database is proportional to the 

logarithm of number of nodes in the tree to be built. In other words, given „n‟ to be the number 

of nodes to be inserted into the tree, the procedure can be implemented in O(log n) time (time 

complexity). Similarly searching a node and deletion of a node also take O(log n) time. This 

proves indexing a biometric database and then searching it or performing other operations on it 

would be faster and possibly less error-prone as compared to clustering. But the graph obtained 

is not very smooth and accurate, thus there is scope for improvement. So, the same has been 

implemented using B tree. 

After the B-Tree has been implemented, a graph has been plotted with the results obtained and 

from these two graphs a comparison has been drawn between the two types of trees used. From 

the graph of binary search tree, the time is not exactly (but roughly) proportional to log (n). The 

graph of B tree is almost similar but as derived from the execution (run) time of the application, 

has time nearly proportional to log (n), i.e. with more number of nodes it takes lesser time to run 

and thus performs comparatively superior. Though from this we cannot directly conclude that B 

trees always necessarily perform better as compared to binary search trees. Indexing techniques 

using Binary Search Tree and B Tree have yielded similar and better though not perfect results. 

Implementing B tree indexing has not proved to be much of an improvement over indexing using 

Binary search trees. Indexing the database using B+ tree and Modified B+ tree was the ultimate 

objective of this project, but due to the timing constraints it could not be implemented. Future 

work is planned to be performed on it. A study of the Red-Black trees has been done and since it 

is known that it has good worst-case running time for its operations and is efficient: it can search, 

insert, and delete in O(log n) time, n being total number of elements in the tree, so further work 

can also be based on implementation of Red-Black trees to improve space and time complexity. 

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
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